

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

RADIO IMPLEMENTATION OF A TESTBED FOR
COGNITIVE RADIO SOURCE LOCALIZATION USING

USRPs AND GNU RADIO

by

Amir Jerbi

September 2014

Thesis Advisor: Murali Tummala
Co-Advisor: John McEachen

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
RADIO IMPLEMENTATION OF A TESTBED FOR COGNITIVE RADIO
SOURCE LOCALIZATION USING USRPs AND GNU RADIO

5. FUNDING NUMBERS

6. AUTHOR(S) Amir Jerbi
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

The shift from wired to fully wireless communication is causing an increasing demand on the frequency spectrum.
The cognitive radio was introduced to solve spectrum scarcity by allowing spectrum sharing between licensed and
unlicensed users. This approach presents a challenge to source localization because of the cognitive radio’s capability
to shift its spatial, frequency and temporal parameters. The extended semi-range-based (ESRB) and cooperative-
received-signal-strength-based (CRSSB) localization schemes are proposed to overcome the challenge of identifying
and locating a cognitive radio over time using a wireless sensor network. The objective of this thesis was to set up a
testbed using GNU Radio and Universal Software Radio Peripherals (USRPs) to estimate the position of a cognitive
radio device using the ESRB and CRSSB localization schemes. The ESRB algorithm does not provide accurate
position estimates but the estimates are observed to be concentrated in the vicinity and converging toward the true
position of the secondary user. The errors are believed to be caused by three factors: a limited number of sensor nodes
used (four), an insufficient number of spectral scans per superframe (55), and the lack of synchronization among
sensor nodes. The CRSSB localization scheme gave a more accurate position estimation.

14. SUBJECT TERMS
cognitive radio, source localization, extended semi range-based localization, cooperative received
signal strength based localization, wireless sensor networking

15. NUMBER OF
PAGES

109
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

RADIO IMPLEMENTATION OF A TESTBED FOR COGNITIVE RADIO
SOURCE LOCALIZATION USING USRPs AND GNU RADIO

Amir Jerbi
Captain, Tunisian Air Force

EE, EABA, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2014

Author: Amir Jerbi

Approved by: Murali Tummala
Thesis Advisor

John McEachen
Co-Advisor

R. Clark Robertson, Ph.D.
Chair, Department of Electrical and Computer Engineering

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The shift from wired to fully wireless communication is causing an increasing demand on

the frequency spectrum. The cognitive radio was introduced to solve spectrum scarcity by

allowing spectrum sharing between licensed and unlicensed users. This approach presents

a challenge to source localization because of the cognitive radio’s capability to shift its

spatial, frequency and temporal parameters. The extended semi-range-based (ESRB) and

cooperative-received-signal-strength-based (CRSSB) localization schemes are proposed

to overcome the challenge of identifying and locating a cognitive radio over time using a

wireless sensor network. The objective of this thesis was to set up a testbed using GNU

Radio and Universal Software Radio Peripherals (USRPs) to estimate the position of a

cognitive radio device using the ESRB and CRSSB localization schemes. The ESRB

algorithm does not provide accurate position estimates but the estimates are observed to

be concentrated in the vicinity and converging toward the true position of the secondary

user. The errors are believed to be caused by three factors: a limited number of sensor

nodes used (four), an insufficient number of spectral scans per superframe (55), and the

lack of synchronization among sensor nodes. The CRSSB localization scheme gave a

more accurate position estimation.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE ...2
B. RELATED WORK ..3
C. THESIS OUTLINE ..3

II. BACKGROUND ..5
A. COGNITIVE RADIO ..5

1. Cognitive Cycle...6
2. Spectrum Sensing ...7

a. Energy Detection-Based Method ..7
b. Cyclostationary-Based Method ...8
c. Matched Filter-Based Method ..9

3. Cooperative Spectrum Sensing ...9
4. Application of Cognitive Radio: IEEE 802.22 Standard10

a. Wireless Regional Area Network Deployment Scenario
and Cognitive Radio Architecture ..10

b. Spectrum Sensing in the IEEE 802.22 Standard11
B. SOFTWARE DEFINED RADIO ...12

1. Software Defined Radio (SDR) ...13
2. Software Defined Radio Model ...13
3. Benefits ..15

C. LOCALIZATION USING WIRELESS RADIO FREQUENCY
SENSORS NETWORK ...15
1. Semi-Range-Based Localization Scheme ...16
2. Extended Semi-Range-Based Localization Scheme17

a. Spectrum Sensing ..17
b. Spectral Environment Mapping ...18
c. Localization ...19
d. Position Refinement ..19

3. Cooperative-Received-Signal-Strength-Based Localization
Schemes ...19

III. COGNITIVE RADIO ENVIRONMENT CONCEPTUAL DESIGN21
A. PROPOSED SCHEME ...21
B. SCENARIO DESIGN ..22

1. Wireless Sensor Network ..23
2. Primary User Network ..25
3. Secondary User...26

a. Spectrum Sensing ..26
b. Decision Making ...27
c. Data Transmission ..27

C. DECISION MAKER ...27
1. Case 1: Extended Semi-Range-Based Localization Scheme28

 vii

2. Case 2: Cooperative-Received-Signal-Strength-Based Scheme.....28

IV. IMPLEMENTATION MODEL AND RESULTS ..31
A. EXPERIMENTAL PLATFORM ...31

1. USRP ...31
2. GNU Radio ...33

B. TESTBED IMPLEMENTATION ..34
1. Primary User ..34
2. Sensor Node ..39

a. USRP Initialization ...39
b. Data Flow ..41
c. Noise Level Estimation and Threshold Selection42
d. Cognitive Environment ...44

3. Secondary User Design ..45
C. EXPERIMENTAL RESULTS ..48

1. Testbed ..48
2. ESRB Localization Scheme Results ...50
3. CRSSB Localization Scheme Results ...51

V. CONCLUSION ..55
A. SIGNIFICANT CONTRIBUTIONS ..55
B. FUTURE WORK ...56

APPENDIX ...59

LIST OF REFERENCES ..85

INITIAL DISTRIBUTION LIST ...89

 viii

LIST OF FIGURES

Figure 1. Cognitive cycle (from [17]). ..6
Figure 2. Deployment scenario of a wireless regional area network (WRAN) over

TV network (from [22]). ..11
Figure 3. Reference architecture for cognitive radio operating in IEEE 802.22

standard (from [10], [22]). ...12
Figure 4. Software defined radio typical model (from [13]). ..14
Figure 5. Conceptual diagram of the proposed extended-semi-range-based (ESRB)

localization scheme for cognitive radio positioning (from [2]).18
Figure 6. Proposed scheme for location estimation of a CR in a dynamic frequency

environment. ..22
Figure 7. Geolocation scenario for cognitive radio using a wireless radio frequency

sensor network (from [2]). ...23
Figure 8. Sensors node state diagram ..25
Figure 9. Two-state Markov model of primary users channel occupancy; pi and pb

are the state transition probabilities (from [2]). ...26
Figure 10. Secondary user state diagram ...27
Figure 11. USRP N210 with WBX daughterboard. ..32
Figure 12. USRP and GNU Radio blocks and interconnections for software defined

radio (from [28]). ...35
Figure 13. Transmitter flow graph ..36
Figure 14. Relationship between number of generated packet and scan reports for one

superframe duration. ..37
Figure 15. Relationship between time delay and number of scan reports for quiet

period. ..38
Figure 16. Sensor node flow graph. ..39
Figure 17. USRP output showing DC offset and edges distortion42
Figure 18. Average signal energy versus distance ..45
Figure 19. Cognitive radio flow graph. ...47
Figure 20. Cognitive radio station using two separated transmitter and receiver

antennas..47
Figure 21. Complete testbed with four sensor nodes, three PUs, and one SU.48
Figure 22. Received energy pattern at each of the sensor nodes in channel 3.49
Figure 23. Experimental model and results using wireless sensor network to locate a

stationary cognitive radio. ..51
Figure 24. Distance error (cm) versus the number of superframes.52
Figure 25. Experimental model and results using received signal strength localization

scheme..53

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. USRP N210 and B200 features..33
Table 2. Measured noise level for each channel using two receiver gains.43
Table 3. Probability of false alarm for each channel with threshold set to −58, −

58.5, −59 dBm and no primary is bursting. ...44
Table 4. Probability of false alarm versus tune delay for SU.48
Table 5. Primary, sensor nodes and secondary user coordinates used in the testbed

of ESRB localization scheme...50

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ς

LIST OF ACRONYMS AND ABBREVIATIONS

cyclic frequency

b frequency step

β detection threshold

Eav estimated average energy

Erv average received energy

F FFT vector size

FS sampling rate

g gain

h channel attenuation

H0 hypothesis 0

H1 hypothesis 1

I in-phase

L packet size

N number of transmitted bursts

NHE the number of times the estimated average energy is higher than a
preselected threshold

NT total number of iterations

Pf probability of false alarm

Pn(t) noise level in the surrounding environment

Ps(t) transmitted signal power

Px(t) power of the received signal

Q quadrature

cyclic autocorrelation function

t time
T time interval
TSF burst duration

x detected signal

c2magsq complex 2 magnitude squared

s2v bit stream 2 victor

ADC Analog-to-Digital Converter

xRς

 xiii

CRSSB Cooperative-Received-Signal-Strength-Based

DAC Digital-to-Analog Converter

DC Direct Current

DOD Department of Defense

ESRB Extended Semi-Range-Based

FCC Federal Communications Commission

FDMA Frequency-Division Multiple Access

FFT Fast Fourier Transformation

FPGA Field Programmable Gate Array

IEEE Institute of Electrical and Electronics Engineers

ISM Industrial, Scientific and Medical

PSK Phase-Shift Keying

PU Primary User

QAM Quadrature Amplitude Modulation

QoS Quality of Service

R&D Research and Development

RF Radio Frequency

SNR Signal-to-Noise Ratio

SU Secondary User

SWIG Simplified Wrapper and Interface Generator

thres Threshold

TMoD Tunisian Ministry of Defense

USR Ultimate Software Radio

USRP Universal Software Radio Peripheral

WRAN Wireless Regional Area Network

 xiv

EXECUTIVE SUMMARY

Communication is shifting from wired to a fully wireless technology, causing an

increasing demand for radio frequency spectrum leading to a shortage in available

frequency bands. Nevertheless, by observing the radio spectrum over time, it can be seen

that some radio frequency bands are heavily used, especially the unlicensed bands,

whereas some licensed bands are underutilized and only partially occupied.

Cognitive radio was introduced as a solution to improve spectrum utilization by

allowing spectrum sharing between licensed and unlicensed users. The cognitive radio is

an intelligent device with the capability of detecting the surrounding spectrum occupancy

and selecting the suitable parameters (e.g., frequency and modulation) to

opportunistically access the spectrum without affecting the quality of the licensed user’s

communication.

Due to the high demand of wireless devices and the shortage of the frequency

spectrum, both the U.S. Department of Defense (DOD) and the Tunisian Ministry of

Defense (TMoD) are moving toward a heavy use of cognitive radio technologies in their

wireless communication. It is challenging for any military application to locate deployed

cognitive radios in the area of operation for two reasons. First, any localization scheme

must be able to adapt along with the cognitive radio as it changes. Second, the scheme

requires keeping track of the cognitive radio’s frequency occupancy to distinguish

between licensed users and cognitive radios.

Angle-of-arrival and received-signal-strength-based localization are two

localization algorithms that are commonly used in a cognitive environment. The accuracy

of these schemes requires a precise channel model and a priori knowledge of the

transmission conditions (e.g., signal-to-noise ratio and path loss factor). The cooperative-

received-signal-strength-based localization scheme (CRSSB) is capable of solving for the

position of a secondary user in cognitive environment using a wireless sensor network

without the prior knowledge of transmission conditions.

 xv

An extended semi-range-based (ESRB) location scheme is another scheme that

has been proposed to overcome the challenge of identifying and tracking the position of a

cognitive radio over time. The scheme’s underlying principle is the monitoring of the

environment’s temporal parameters (i.e., position and frequency occupancy) in a

collaborative manner to determine the cognitive radio’s position.

The objective of this thesis was to implement a real-world software-defined radio

environment experiment in which the position of a cognitive radio device was estimated

using the ESRB and CRSSB localization schemes. The network elements were designed

based upon the software-defined radio approach, using a GNU Radio interfaced with

Ettus Research’s Universal Software Radio Peripheral (USRP) devices. Three GNU

Radio routines were developed to meet the design requirements of the sensor node, the

primary user, and the secondary user. Two available devices from Ettus Research were

used: the USRP N210 with WBX daughterboard for sensor nodes and the secondary user

(cognitive radio device) and the USRP B200 for primary users.

The cognitive environment experimental testbed was set up on the roof of

Spanagel Hall at the Naval Postgraduate School. Each of the networked elements worked

successfully and provided the desired output. First, the primary user generated a signal

with fixed amplitude at the preselected channel. Second, all sensor nodes were able to

perform the energy detection process of the primary user signal. Finally, the secondary

user was able to sense the spectrum and transmit a burst in the detected vacant slots.

As a final step, the scan reports from each sensor node were aggregated at the

decision maker in which the ESRB and the CRSSB localization algorithms were executed

to estimate the secondary user location. For the ESRB localization scheme, the results

were not accurate, but the estimates are observed to be concentrated in the vicinity and

converging toward the true position of the secondary user. The position errors are

believed to be caused by three factors: a limited number of the sensor nodes used (four

sensor nodes), a number of spectral scans per superframe (55 scans) which were fewer

than the suggested number to obtain close estimates (600 scans), and a lack of timing

synchronization among sensor nodes. The CRSSB localization scheme provided position

estimation within an acceptable level of tolerance.
 xvi

ACKNOWLEDGMENTS

I would like to offer my gratitude to Professor Murali Tummala, Professor John

McEachen, Robert Broadston, and Donna Miller of the Naval Postgraduate School;

Major Agur Adams USMC; and Lieutenant Carson McAbee USN, for their invaluable

contribution to this work.

I would like also to thank writing coach Chloe Woida of the NPS Graduate

Writing Center, for her precious help in writing this thesis.

Finally, special thanks to my mother, father, and wife for their support, prayers,

patience, and thoughts throughout my time at NPS.

To Falfoula, Dad loves you and I am sorry for being away for two years.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 xviii

I. INTRODUCTION

Currently, communication is switching from wired to a fully wireless technology.

Moreover, the demand for wireless applications is expanding, causing an increasing

demand for radio frequency spectrum [1], [2], [3]. To establish a beneficial use of the

radio spectrum, the Federal Communication Commission (FCC) in the United States and

similar governmental agencies in other countries, are regulating frequency spectrum

access between users by assigning frequency bands to specific users (licensed users) in a

specific location.

The FCC is facing the challenge of finding free frequency slots for new services

which is considered the hardest problem to solve because of spectrum scarcity.

Nevertheless, by observing the radio spectrum over time, it can be seen that some radio

frequency bands are heavily used, especially the unlicensed bands, whereas some

licensed bands are underutilized and only partially occupied [2], [4], [5].

Cognitive radio was introduced as a solution to improve spectrum utilization by

allowing spectrum sharing between licensed and unlicensed users. A cognitive radio is an

intelligent device with the capability of being aware of the radio frequency occupancy

and selecting the suitable parameters (e.g., frequency and modulation) to

opportunistically access the spectrum without affecting the licensed user’s

communication quality [1], [2], [6], [7], [8].

Both the U.S. Department of Defense (DOD) and the Tunisian Ministry of

Defense (TMoD) are moving toward a heavy use of cognitive radio technologies in their

wireless communication due to high demand on wireless devices and the shortage of

frequency spectrum. It is always important for any military application to be aware of the

location of any deployed wireless device in the area of operation, which is challenging

when considering these cognitive radio devices for two reasons. First, any localization

scheme must be able to adapt along with the cognitive radio as it changes. Second, the

scheme requires keeping track of the cognitive radio’s frequency occupancy to

distinguish between licensed users and cognitive radios [1], [2].

 1

Angle-of-arrival and received-signal-strength-based-localization are two

localization algorithms that are commonly used in cognitive environments. The accuracy

of these schemes requires a precise channel model and a priori knowledge of the

transmission conditions such as signal-to-noise ratio and path loss factor [9]. The

cooperative-received-signal-strength-based localization scheme (CRSSB) was proposed

in [9] to determine if it is possible to solve for the position of the secondary user in a

cognitive environment using a wireless sensor network.

An extended semi-range-based (ESRB) location scheme is proposed in [1], [2] to

overcome the challenge of identifying and tracking the position of a cognitive radio over

time. The scheme’s underlying principle is the monitoring of the environment’s temporal

parameters (i.e., position and frequency occupancy) in a collaborative manner to

determine the cognitive radio’s position [1], [2]. In order to test the feasibility and the

efficacy of both schemes (ESRB and CRSSB localization) in real word conditions and to

demonstrate that a wireless sensor network can be used to locate a cognitive radio over

time, a scenario is implemented using software defined radios in this work.

A. THESIS OBJECTIVE

The objective of this thesis is to implement a real-world testing environment in

which the position of a cognitive radio device is estimated using the ESRB and CRSSB

localization schemes. To take advantage of software defined radio features (mainly

flexibility and adaptability), the software defined radio design framework, GNU Radio,

interfaced with Ettus products (Universal Software Radio Peripheral (USRP)) was used

in this work. Three GNU Radio routines were developed to meet the design requirements

of a sensor node, a primary user, and a secondary user. Two available devices from a list

of Ettus products were used: 1) the USRP N210 with WBX daughterboard for sensor

nodes and the secondary user (cognitive radio device) and 2) the USRP B200 for primary

users. The goal is to develop an overall cognitive environment testbed and conduct an

experiment to locate a secondary user by using measurements from the sensor nodes and

using the primary users as points of reference. The ESRB and the CRSSB algorithms are

used for position estimation.

 2

B. RELATED WORK

Cognitive radio is the future of wireless communication; therefore, several

technologies are being adopted and standardized, such as the Institute of Electrical and

Electronics Engineers (IEEE) standards, 802.22 [10], [6], [11] and the 802.11af [11].

A software defined radio design approach helps promote the development of

wireless communication systems based on cognitive radio features because of the

capability of software defined radios to dynamically change their features and to

reconfigure themselves to accommodate network requirements [12]. Consequently, a

large number of research projects are being conducted to test the feasibility of cognitive

radios and their ability to benignly share the spectrum with licensed users using software

defined radio tools [13], [14], [15]. In this thesis, we use the Ettus USRP devices to

implement a testbed of a cognitive radio system.

Source localization for cognitive radio using wireless sensor nodes and

cooperative spectrum sensing algorithms remains an active area of research because

current localization schemes seem to be inefficient when dealing with this type of

devices. Thus, multiple solutions based on the previously mentioned approaches are

proposed, such as the semi range-based location scheme, the cooperative received signal

strength localization scheme and the extended semi range-based location scheme [1], [2]

[9]. In this work, we adopt the ESRB and the CRSSB localization schemes to estimate

the position of a cognitive radio device and to demonstrate the scheme ability to such

devices.

C. THESIS OUTLINE

A background on cognitive radio characteristics and applications is provided in

Chapter II, along with an overview of the software defined radio design approach and

source localization schemes. In Chapter III, the conceptual diagram of the overall

proposed scenario to test the ESRB and the CRSSB localization schemes is provided. The

testbed scenario used to implement the ESRB and CRSSB localization scheme, along

with test results, are presented in Chapter IV. A summary of the achieved work, the

significant results accomplished in this work and perspectives for future work are

 3

included in Chapter V. The GNU Radio code used to perform the overall testbed

development and testing is provided in the appendix.

 4

II. BACKGROUND

In Chapter I, the cognitive radio was mentioned as a solution for the spectrum

scarcity problem; however, this solution brings new challenges, especially in a source

localization process. An overview of cognitive radio and source localization using a

wireless radio frequency sensor network is provided in Sections A and C of this chapter,

respectively. A discussion of software defined radio and an examination of its

characteristics and benefits is explained in Section B.

A. COGNITIVE RADIO

In [16], the Federal Communications Commission (FCC) defines cognitive radio

as

A radio or system that senses its operational electromagnetic environment
and can dynamically and autonomously adjust its radio operating
parameters to modify system operation, such as maximize throughput,
mitigate interference, facilitate interoperability, access secondary markets.

The FCC also dictated specific terminology for the cognitive environment in

which:

• A primary user is defined as the licensed user of a specific spectrum band
in a specific area; it has the highest priority and privilege of access in that
band [3].

• A secondary user is defined as an unlicensed user that can
opportunistically access the frequency spectrum without causing any
interference to a primary user [3].

• Black spaces are bands of frequency that are occupied by a high-power
signal from time-to-time; it is necessary for the secondary user to avoid
using black spaces at that specific time [3].

• Grey spaces are channels occupied by a low power signal. The secondary
user can consider those spaces for use in extreme needs [3].

• White spaces or spectrum holes are the opportunities that a secondary user
is mainly looking for because they are signal-free except for
environmental noise [3].

 5

1. Cognitive Cycle

For a secondary user to be able to opportunistically use the white space, it must

have the cognitive radio capabilities as outlined in the FCC description [16]. The

cognitive radio architecture is based on the cognitive cycle. It is composed of four major

interconnected functions, spectrum sensing, spectrum management, spectrum mobility,

and spectrum sharing, as shown in Figure 1.

Figure 1. Cognitive cycle (from [17]).

Spectrum sensing is defined as the process that permits the cognitive radio to

detect primary users, to create a picture of the spectrum occupancy and find white space

that can be shared without any harmful interference between the primary and the

secondary users. This is the most important process required in the cognitive radio

design [17]. The next subsection is dedicated to the description of the spectrum sensing

process.

 6

Spectrum management is the task of analyzing the results of the spectrum sensing

functions and deciding the best available white space that satisfies the communication

quality-of-service (QoS) requirements [17]. Spectrum mobility is responsible for

exchanging the secondary user’s operating frequency when it is necessary to avoid

interference between primary users and the secondary user [17]. Spectrum sharing is

responsible for managing the use of the spectrum and guaranteeing that it is shared

among the users (primary and secondary users) without any degradation on the QoS. It is

the most challenging task in the cognitive radio design [17].

2. Spectrum Sensing

Observing the radio environment over a long period of time shows that its

behavior is not static over time but may change at any time. In order to keep the spectrum

sharing benign, secondary users must be able to back off from operating in a given

frequency band whenever the primary user needs to utilize that band; therefore, the

frequency band-of-interest should be periodically sensed before any access by a

secondary user [14], [7], [14].

Spectrum sensing is defined in [18] as “the art of performing measurements on a

part of the spectrum and forming a decision related to spectrum usage based upon the

measured data.” Typically, spectrum sensing provides knowledge of instantaneous

occupancy of the frequency band-of-interest. This requires examining a narrow sub-band

(or channel) over a short period of time in order to be able to identify whether or not a

primary user is occupying this sub-band [2], [18], [19].

The following sub-sections highlight three of the most common spectrum sensing

methods: 1) energy detection-based methods, 2) cyclostationary-based methods, and 3)

matched filter-based-methods.

a. Energy Detection-Based Method

The energy detection spectrum sensing method is the most widely used method

because of its simplicity and low computational cost [3]. Detection is based on

calculating the average energy of a received signal at a particular channel over a short

 7

period of time and then comparing it to a threshold [3], [20]; hence, no prior knowledge

of the signal features is required, only the noise level in the spectrum band-of-interest is

needed to set up the detection threshold β to be able to determine one of the two

hypotheses (H0 or H1):

()

() ()
0

1

,
() , 0

,
n

x
s n

P t H
P t t T

hP t P t H
= < ≤ +

 (1)

where Px(t) is the power of the received signal, Ps(t) is the transmitted signal power from

primary user, Pn(t) is the noise level in the surrounding environment, h corresponds to the

channel attenuation, t is time, and T is the time period [11], [19].

In the case of hypothesis H0, a free or unoccupied channel is detected; thus, a

secondary user can opportunistically use it. In the case of hypothesis H1, a busy or

occupied channel is identified, and cannot be used by secondary users [4], [5], [19].

b. Cyclostationary-Based Method

Since any modulated signal presents a periodicity in its behavior, the

cyclostationary-based spectrum sensing method offers an alternative to the energy

detection based method by taking advantage of the signal statistical properties [2], [8],

[20]. The detection process is realized by retrieving the cyclostationarity property of the

received signal which corresponds to the unique cycle frequency, taken from the spectral

correlation function given by [3]

() () 2, j f

xS f R e dς π τς τ τ
∞

−

−∞

= ∫
 (2)

where ()xRς τ is the cyclic autocorrelation function determined by [20]

 () () (){ }* 2j t
xR E x t x t eς πςτ τ τ −= + −

 (3)

x(t) is the detected signal and ς is the cyclic frequency [20].

This method has more advantages than the previous method. With this technique,

it is possible to differentiate among detected users (primary or secondary), and the

detection of low signal-to-noise ratio (SNR) signals is feasible [3]. This approach

 8

requires a priori knowledge of the cyclostationary properties of the transmitted signal [3],

[8].

c. Matched Filter-Based Method

The matched filter spectrum sensing technique is the optimal detection method of

all the previously mentioned methods for three reasons: 1) it has the shortest processing

time, 2) it achieves the lowest probability of false alarms, and 3) it makes detection

possible even for low SNR signals [3], [20].

To accomplish detection, the received signal is cross-correlated with a locally

generated signal similar to the transmitted one (having the same features) [3], [20]. This

detection technique requires a complete knowledge of the transmitted signal, which is a

drawback given that some information may be unavailable in advance [3], [20].

Additionally, the hardware implementation of this technique is very complex, especially

in the case of the detection of multiple signals. The receiver’s design in this case requires

the use of a separate matched filter for each channel of interest [3].

3. Cooperative Spectrum Sensing

The effectiveness of spectrum sensing methods for a single sensor node is limited

by the fact that a single sensor node can misidentify the presence of a primary user if the

transmitted signal experiences any type of multipath fading or non-line-of-sight

conditions [20]. To overcome this problem and to be able to obtain an effective global

result, a cooperative spectrum sensing solution is introduced in [20]. In this approach,

many sensors are dispersed to cover an area of interest and configured to share spectrum

information with each other through a single decision station in which a global decision is

processed [2], [20].

Three essential steps define the cooperative spectrum sensing technique [21].

First, a sensor node carries out local sensing and checks whether the sensed channel is

occupied. Second, the individual sensor node decisions are sent to the decision maker

node where they are collected and further processed to form a global decision on the

occupancy of the sensed channel based on a predefined decision rule. For example, the

 9

logical OR rule may be used when a channel is declared busy if only one individual

decision declares it so [21].

4. Application of Cognitive Radio: IEEE 802.22 Standard

Cognitive radio represents the next generation technology in wireless

communications. It is a promising technique for several markets, such as public safety

and military communications. The most relevant application is the implementation of an

operating cognitive radio network on top of a television broadcast network. In early 2002,

the IEEE 802.22 working group presented the wireless regional area network standard,

which provides guidelines on using cognitive radio networks to supply broadband

wireless last mile access in rural areas [20], [21].

Fundamentally, a deployed cognitive radio should not cause any interference to

the existing television network (primary user); hence, those users are required to sense

the spectrum before accessing channel in order to prevent collisions with the primary user

[3], [6], [19], [20].

a. Wireless Regional Area Network Deployment Scenario and Cognitive
Radio Architecture

A deployment scenario for wireless regional area networks is shown in Figure 2.

The IEEE 802.22 standard proposes a centralized topology for the wireless regional area

network (a point-to-multipoint architecture), which means that a single base station is

able to manage every single station (consumer premise equipment) within its area of

coverage or cell [6], [9], [22]. The base station is capable of controlling communication

and media access of up to 255 consumer premise equipment terminals.

 The standard proposes a multi-layer based architecture for the operating

cognitive radios in the wireless regional area network, as shown in Figure 3 [6], [10],

[22]. The physical layer provides the necessary functionality to support cognitive ability,

such as spectrum sensing and data communication functions [6], [10].

 10

Figure 2. Deployment scenario of a wireless regional area network (WRAN)

over TV network (from [22]).

Second, the medium access control (MAC) layer coordinates access to the media

and synchronization between cells by managing the spectrum access that is promoted by

using a superframe configuration. A superframe is composed of 16 MAC frames of ten

milliseconds each, which make one superframe’s duration equal to 160 milliseconds [2],

[6], [10]. Finally, the higher layers (e.g., IP and ATM) are responsible for maintaining a

good communication QoS [6], [10], [22].

b. Spectrum Sensing in the IEEE 802.22 Standard

The IEEE 802.22 standard dictates that cognitive radio network elements should

be aware of the spectrum occupancy instantaneously. This functionality is performed

using 1) the predefined television channel usage database and 2) spectrum sensing [6]

[10], [22]. The cooperative spectrum sensing technique is the method suggested by the

standard. The central base station is deployed as the decision-maker station, which may

instruct each sensor node to carry out spectrum sensing in order to identify the occupancy

of a channel of interest [20], [21].

 11

Figure 3. Reference architecture for cognitive radio operating in IEEE 802.22

standard (from [10], [22]).

The sensing process is accomplished in two steps: coarse and the fine sensing.

Coarse sensing is performed quickly (less than 1 ms) so that a general idea of the

spectrum occupancy is obtained; usually, an energy-detection-based technique is used in

this step. Based on the generated results, and to have a more precise measurement, the

base station (decision maker) may command a sensor to execute fine sensing in a specific

channel. Fine sensing is usually based on more sophisticated techniques than energy-

detection-based methods (cyclostationary or matched filter based techniques) [20], [21].

B. SOFTWARE DEFINED RADIO

The increase in the pace of development of wireless communication devices has

led to a variety of protocols and standards [13]. To be able to communicate with other

devices operating with different network protocols, an up-to-date communication system

should be able 1) to interface with any other system in the market, 2) to easily respond to

upgrades of eventual innovation, and 3) to support integrated services [13]. In order for

 12

these devices to be able to set up a reliable communication with an acceptable QoS, they

have to be capable of changing their features dynamically and adapting themselves to the

required communication characteristics. Software Defined Radio (SDR) architecture is a

satisfactory solution for the previously mentioned needs since the radio is capable of

reconfiguring itself and altering its features to accommodate the network requirements

[13].

1. Software Defined Radio (SDR)

In 1991, Mitola presented software defined radios that had the capability to be

dynamically reprogrammed and reconfigured [13]. Later on, the Software Defined Radio

Forum characterized the ultimate software radio (USR) as a radio with the ability to be

fully programmable through control information and to be capable of operating over a

wide frequency band [13]. A more realistic definition for software defined radios is stated

as

a software defined radio is a radio exhibiting some control on the radio
frequency hardware by reprogramming some of its features, such as the
modulation scheme, encryption, and error correction process. As a result,
the same hardware can be used to accomplish different tasks at different
times [13].

2. Software Defined Radio Model

A practical model for a software defined radio is shown in Figure 4. Its main

components are 1) a flexible radio frequency hardware, 2) an analog-to-digital converter

(ADC) and digital-to-analog converter (DAC), 3) a channelization and sampling rate

converter, and 4) a processor (hardware and software). The use of a smart antenna

permits the radio to minimize the noise and multipath fading effects on the received

signal [13]. The main purpose of the flexible radio frequency hardware is to convert the

received signal to an intermediate frequency in the receiver and to translate an

intermediate frequency signal to the desired frequency in the transmitter [13].

 13

Figure 4. Software defined radio typical model (from [13]).

The analog-to-digital converters and digital-to-analog converters permit the

conversion of the analog intermediate frequency signal to a digital signal and the

processed digital data to an analog intermediate frequency signal, respectively. For most

software defined radios operating as receivers, the conversion of the analog signal to the

digital domain is done as quickly as possible to allow the maximum number of the signal

processing tasks in the digital domain since digital algorithm implementations are easier

than analog tasks. In case of the transmitter, most of the signal-processing tasks are

carried out in the digital domain before conversion to the analog domain and transmission

[13].

The channelization and sampling rate conversion block allows interfacing

between the analog-to-digital converter and the processing hardware and adapts the

output sampling rate of the analog-to-digital converter to the rate supported by the

processing hardware (e.g., field programmable gate array) and vice versa [13]. The

processing function is meant to accomplish all the digital signal processing functionalities

(e.g., modulation and demodulation) using either software (e.g., GNU Radio, and

Simulink) or reprogrammable hardware, such as field programmable gate arrays and

application specific integrated circuits [13].

 14

3. Benefits

Software defined radios allow service providers to easily and quickly upgrade

their infrastructure to meet the requirement of integration with other networks. This can

be done by taking advantage of the flexible software defined radio architecture, which

allows the radio to alter its features and to meet the desired communication QoS.

Additionally, software defined radios have the capability to operate in accordance with

multiple standards and protocols in different regions, which defines its global mobility

feature [13].

A software defined radio device is a great tool for research and development

(R&D) in networking and communications fields because of its reconfigurability feature;

the device may be reconfigured many times in a testbed scenario. Also, software defined

radios are compact and power efficient since the same piece of hardware can be reused to

perform different tasks and interfaces [13].

A large variety of software defined radio products are commercially available

today. The most common products for R&D use are from the Ettus Research (USRPs)

and Epiq Solutions, which are fairly inexpensive low power reconfigurable radio systems

with high capability and wide frequency range. Many venders are marketing their

software defined radio products for safety and military use, such as the R&S M3TR from

Rohde & Schwarz and the Harris XG26P from Harris Corp.

C. LOCALIZATION USING WIRELESS RADIO FREQUENCY
SENSORS NETWORK

Source localization is a very important task, especially in the case of security and

military applications. Various localization techniques that permit a wireless system to

locate itself or other operating wireless devices in the same neighborhood can be found in

the literature [1], [23], [24]. Those schemes can be categorized as range-free and range-

based localization techniques [1], [24].

Range-based localization schemes accomplish position estimation in two phases

[25]. First is the ranging phase, in which the algorithms try to estimate the range between

the receiver and the transmitter using one of the common metrics (e.g., time-of-arrival,

 15

time-difference-of-arrival, and received-signal-strength). Second is the localization phase,

in which the position of a transmitter is estimated by intersecting three or more estimated

ranges from different sensor nodes with known positions [25]. Range-free localization

schemes permit estimation of the position of a radio device using a wireless sensor

network; thus, multiple sensors with known positions are dispersed in the area-of-interest

and configured to cooperate [26].

These two schemes are not able to provide good position estimations in the case

of cognitive radio localization [27]. This is because both techniques lack the capability to

change their features as the cognitive radio changes. Consequently, any scheme meant to

locate a cognitive radio and accurately estimate its position must support some level of

adaptation and be able to account for the capability of the target radio to hop from one

frequency to another over time [27]. Semi-range based localization is a feasible solution

for this problem.

1. Semi-Range-Based Localization Scheme

This scheme was proposed to estimate the position of a primary user in a

cognitive radio environment [24]. The secondary users in this case form a wireless sensor

network to perform cooperative spectrum sensing. The results are then used to draw a

map of the spectrum occupancy, and the map is used to estimate the location of the

desired primary user [24].

Given that the position of each sensor node is known in advance, the scheme

relies on exploiting the relationship between the probability of detection and the distance

of the secondary user to the primary user [24]. This technique accomplishes location

estimations by taking advantage of both range-based and range-free localization

estimation methods. The processing is performed in two steps. First, the probability of

detection for a primary user is estimated using the binary decision of local spectrum

sensing reported by each sensor node (secondary user in this case). Second, the position

of the desired primary user is estimated using the probability of detection and the

received-signal level, similar to the way estimation is carried out by a range-based

scheme [24].

 16

To be highly accurate, the semi-range localization scheme requires a priori

knowledge of the transmitted power by the primary user, which is a major drawback of

this technique because it violates the fundamentals of cognitive radio environment; no

cooperation is allowed between primary user and secondary user [2]. A solution to this

problem was proposed in [23] as a practical semi range-based localization method. This

algorithm reduces the need for a priori knowledge of the transmitted signal power by

estimating it during the localization process using the non-linear-least-square method;

however, neither technique provides an accurate position estimate, especially in the case

of locating a secondary user in a cognitive radio environment [2].

2. Extended Semi-Range-Based Localization Scheme

In [1], an extended semi-range-based (ESRB) localization scheme was proposed

to accurately estimate the position of cognitive radio using wireless sensor network. The

conceptual diagram of the ESRB is shown in Figure 5. The algorithm relies on four

primary aspects: 1) cooperative spectrum sensing, 2) spectral environment mapping, 3)

localization through the iterative nonlinear least-squared method, and 4) position

refinement [1], [2]. Overviews of each aspect of the functionalities are provided in the

following subsections.

a. Spectrum Sensing

This task takes place at each sensor node of the wireless sensor network in order

to determine if channels are occupied over a period of time [2]; therefore, the sensor node

performs an energy detection process at each channel. The decision data is recorded into

a spectral scanning report in which occupied channels are identified using a binary ‘1’,

and unoccupied channels are identified using a binary ‘0.’ After the overall spectrum of

interest is scanned, the scan report is transferred to the decision maker for further

processing [2].

 17

Figure 5. Conceptual diagram of the proposed extended-semi-range-based

(ESRB) localization scheme for cognitive radio positioning (from [2]).

b. Spectral Environment Mapping

This process is carried out at the decision maker and is performed by interpreting

the collected scan reports from each sensor node [2]. The main goal of this task is to

differentiate between occupied and unoccupied channels by drawing the spectral

environment map; thus, a cooperative spectral sensing process is executed. In order to

optimize the detection algorithm efficiency, the majority decision rule is the adopted

approach, in which a channel is declared as occupied if the number of sensors indicating

that it is a busy channel is more than half of the total number of sensor nodes. Only

 18

identified busy channels with their corresponding signal level are transferred to the next

processing level [2].

c. Localization

The main purpose of this task is to identify whether the present user is a primary

or a secondary user. For each occupied channel, an estimation of the present user position

is calculated and compared to previously known primary users’ positions (available in a

geo-location database) [2]. Any estimated position that matches within an acceptable

error (predefined level of tolerance) with any available position in the geo-localization

data base is discarded. If the position estimate does not match with any primary user

position, it is considered a potential secondary user or user-of-interest, and its position

estimate is stored to form the history and is fed to the position refinement process [2].

d. Position Refinement

The intention behind this process is to evaluate the results of the previous process

to provide accurate positions for the secondary users [2]. The position refinement process

manages the history of the discovered user-of-interest. For all received data, the process

tries to determine if any of the new position estimates match with old positions within a

radius of tolerance. Matched positions are merged together, and positions that have been

recorded multiple times are declared to be a secondary user. If no match is found, the

newly discovered position is recorded as a new secondary user, and the estimated

position is entered in the history record [2].

3. Cooperative-Received-Signal-Strength-Based Localization Schemes

In the cooperative-received-signal-strength-based (CRSSB) localization schemes,

the distance between the transmitter and the receiver is estimated based the calculated

squared-magnitude of the signal and the channel propagation attenuation model [9]. To

be accurate on distance estimation, any localization scheme based on received signal

strength requires an accurate channel propagation model. Classical received-signal-

strength-based localization schemes require a priori knowledge of the effective isotropic

radiated power of the transmitter to obtain an acceptable location estimation. This is a

 19

drawback of the technique, especially when the effective isotropic radiated power of the

transmitter of interest is unknown; however, this kind of scheme is considered a low cost

localization technique because it is relatively easy to implement.

In [9], an algorithm using the received-signal-strength metric without any

knowledge of the effective isotropic radiated power of transmitter in advance is proposed

in order to optimize the effectiveness of this scheme in cognitive environment. First, all

sensor nodes apply a fast spectrum sensing (for a short period-of-time) to obtain an idea

of the occupancy of the spectrum-of-interest and report the calculated energy at the

channel to the decision maker. Based on those energies, the decision maker decides

which sensor nodes need to apply an additional fine spectrum sensing (nodes with the

highest energy are chosen). Second, the chosen sensor nodes carry out a fine spectrum

sensing to determine a more accurate energy estimation of the signal occupying the

channel and report the estimated energy to the decision maker. Third, the decision maker

uses the received energy estimates and the positions of the sensor nodes to estimate the

transmitter positions using a received-signal-strength technique. Finally, the estimated

positions are compared to the primary user positions. If a match is found within an

acceptable level of tolerance, the position estimate is discarded. If no matched is found,

the estimate becomes the position of a potential secondary user [9].

In this chapter, an overview of cognitive radio characteristics and applications

was presented to illustrate how this concept can be used to overcome the problem of

spectrum scarcity, and an outline of software-defined radio characteristics and benefits

was provided. Multiple source localization schemes were introduced, along with an

explanation of the ESRB and CRSSB localization schemes for cognitive radio. In

Chapter III, a conceptual design of a cognitive radio environment is proposed to

implement and test the feasibility of the ESRB and the CRSSB localization schemes.

 20

III. COGNITIVE RADIO ENVIRONMENT CONCEPTUAL
DESIGN

The main advantage of a cognitive radio is its ability to modify its attributes over

time (e.g., frequency and modulation) in order to adapt to the surrounding environment

and avoid interference with primary users [1], [6], [11]; however, source localization is

very challenging when considering this type of device for two reasons. First, any source

localization scheme must be able to adapt along with the cognitive radio as it changes.

Second, it requires keeping track of the radio’s frequency occupancy to distinguish

between primary and secondary users of the frequency spectrum [2], [24]. The ESRB and

CRSSB localization schemes were proposed in [1] and [9], respectively, to overcome the

challenge of identifying and tracking the position of a cognitive radio over time.

An overview of the proposed software-defined radio testbed and its schematic

diagram are given in Section A of this chapter. An outline of the scenario design along

with a detailed explanation of the design principals of each element of the cognitive radio

system are provided in Section B of this chapter. Finally, the decision-maker design is

presented in Section C.

A. PROPOSED SCHEME

To test the feasibility of the ESRB localization scheme, a scenario was introduced

in [1] that demonstrated how a wireless sensor network can be used to locate and track a

cognitive radio over time. The scheme’s underlying principle is the monitoring of the

environment’s temporal parameters (i.e., position and frequency occupancy) in a

collaborative manner to determine the cognitive radio’s position [1]. To accomplish this,

the scheme relies on multiple sensor nodes to create a wireless radio frequency sensor

network. The collected measurements from each sensor are used in a collaborative

manner to obtain spectrum sensing results. These results are in turn used to estimate the

position of the emitter-of-interest (cognitive radio) [1], [2].

The developed software-defined radio-based cognitive radio system used to

implement the testing scenario is explained in this section. The schematic diagram of the

 21

proposed system is shown in Figure 6. The proposed hardware testbed system consists of

four major parts: the primary users who have the right to access a frequency band-of-

interest, a secondary user who can opportunistically access the same frequency band

when the primary users are idle, a sensor network consisting of multiple radio frequency

sensor nodes that continuously measure the signal strengths of both the primary and

secondary users, and a location estimation scheme to determine the position of the

secondary user.

Figure 6. Proposed scheme for location estimation of a CR in a dynamic

frequency environment.

First, a wireless sensor network is deployed in an area-of-interest in which

primary users and a single secondary user are sharing the same frequency band. Second,

each sensor node performs spectrum sensing in the band of interest to determine whether

a user is present by comparing the measured signal to a preselected threshold. Third, a

preprocessing and detection process is carried out in order to differentiate between the

primary user and the secondary user. Finally, the localization estimation process is

accomplished using the output of the previous process and the ESRB or the CRSSB

localization algorithms. Each function of the proposed scheme is explained in detail in

the following sections.

B. SCENARIO DESIGN

The goal of the proposed scheme is to estimate the location of the secondary user

in a cognitive radio environment and to track the secondary user’s frequency occupancy

over time using a collaborative spectrum sensing approach [1], [2]. The scenario is

designed to test the performance of the ESRB and the CRSSB schemes using a wireless

sensor network as illustrated in Figure 7. The testing scenario consists of multiple sensor

nodes that are randomly distributed in an area-of-interest (the secondary user

 22

environment) in which several primary users are present and a single secondary user is

deployed. Additionally, a decision maker is located within the sensor nodes in order to

process the collected measurement and return the estimated position of the secondary

user. All of the primary users and sensor nodes’ positions are assumed to be known in

advance and stored in a geo-localization database [2].

Figure 7. Geolocation scenario for cognitive radio using a wireless radio

frequency sensor network (from [2]).

This scenario is based on IEEE 802.22 standard. An overview of the design of

each component is provided in the following subsections.

1. Wireless Sensor Network

Multiple sensor nodes are deployed in the area-of-interest and connected to the

decision maker, which together form a wireless radio frequency sensor network. A sensor

node consists of a radio frequency sensor to measure the signal from the primary and

secondary users, a transceiver to send/receive the measurements as appropriate, and a

processor to undertake any local processing of the measurements. The role of each sensor

 23

node is to examine the whole frequency spectrum-of-interest and send a spectral scan

report to the decision maker [1], [2]. The spectral scan report consists of a binary 0 or 1

reflecting the estimated channel energy as either vacant or occupied, respectively [2].

Multi-bit spectral scan reports utilizing multiple threshold levels are also possible. For

example, a 2-bit scheme uses three threshold levels. While the complexity of

implementation increases, these schemes have been shown to provide improved

performance [20].

The spectral scanning process is done in three steps: tune, listen, and decide [6].

To determine the occupancy of the spectrum, an energy detection approach is adopted in

this work [2] because it is the least complicated in the implementation process compared

to other spectrum sensing schemes (e.g., matched filter detection and cyclostationary

detection) [3], [20]. No prior knowledge (modulation scheme) of the signal is required to

confirm its absence or presence [3], [20].

A complete spectrum scan consists of an examination of each frequency channel-

of-interest in which the signal energy E is calculated as

2 2

1
10

()
10log

N

i i
i

I Q
E

N
=

 + 
 =
 
 
 

∑
 (4)

where Ii and Qi are the ith symbol’s in-phase and quadrature components, respectively,

and N is the total number of samples.

If E ≥ β (where β is a preselected threshold value), a signal is assumed to be

present (i.e., we have a busy channel) and an associated binary ‘1’, the channel energy,

and the channel number are added to the scan report [2]. If E < β, then no signal is

present (i.e., we have a free channel), so a binary ‘0’ is associated with the channel

number and added to the scan report. The sensor then tunes to the next channel and

repeats the same steps. After the whole spectrum-of-interest has been surveyed, a finished

scan report is sent to the decision maker for further processing. This spectral scanning

process is repeated indefinitely as shown in Figure 8 [2].

 24

Figure 8. Sensors node state diagram

2. Primary User Network

The primary user network is composed of multiple primary users, each with an

allocated fixed frequency band or channel. A frequency-division multiple accesses

(FDMA) approach is adopted in the primary users’ network design to ensure that adjacent

channels do not overlap [2]. This design approach is also followed by the sensor nodes

and is integral to the energy detection spectrum sensing approach because sensor nodes

do not have the capability to differentiate among the primary user signals.

In terms of occupancy, the primary user’s behavior follows a two-state Markov

model as shown in Figure 9 [2], [24]. The primary user alternates between the idle and

busy states (pi and pb are the respective transition probabilities) for different periods of

time. During the idle state, no traffic is broadcast, leaving unoccupied frequency bands

available (white spaces) for either a short period-of-time between the adjacent

superframes or for the duration of a complete superframe. During the busy state, the

primary user transmits a fixed amplitude signal in order to keep the channel occupied for

a complete superframe [2], [24].

 25

Figure 9. Two-state Markov model of primary users channel occupancy; pi

and pb are the state transition probabilities (from [2]).

3. Secondary User

The design of the secondary user (cognitive radio) is based on the IEEE 802.22

standard [6], [10]. Most of the definitions and functions for the cognitive radio building

blocks and their interconnection are provided by the standard and were taken into

consideration in designing the secondary user for this scenario. The cognitive radio

system state diagram consists of three major components: spectrum sensing, decision

making, and data transmission as shown in Figure 10 [6], [10].

a. Spectrum Sensing

 To minimize the probability of interference with primary users, the IEEE 802.22

standard dictates use of a coarse and fine spectrum sensing approach in the secondary

user’s design as mentioned in Chapter II [2], [7], [10]. First, coarse sensing is carried out

using energy detection. Based on results of the coarse sensing and in order to have more

accurate measurements of the spectrum occupancy, fine sensing may be carried out using

other spectrum sensing methods (e.g., matched filter detection or cyclostationary) [2], [7],

[10].

Only coarse spectrum sensing is adopted in this work since fine sensing requires

the implementation of more complex algorithms to determine the primary user signal

characteristics [2]. The cognitive radio carries out in-band sensing without identifying a

specific modulation technique. Afterwards, the estimated signal energy is transferred to

the decision making block [2].

 26

b. Decision Making

In this step, the received energy is compared to the threshold in order to identify

the presence of the primary user or white space. If a busy channel is identified, the

spectrum sensing process is carried out in the adjacent channel. If a free channel is

identified, the center frequency of the channel is sent to the data transmission block [2].

c. Data Transmission

The focus of this step is to generate and send data. The data generation process

adopted in the scenario is a random binary packet generation process where multiple

packets are placed within the length of a frame. Next, all packets are transferred to the

transmission process in order to be transmitted [2].

Figure 10. Secondary user state diagram

C. DECISION MAKER

The main function of the decision maker is to estimate the secondary user’s

position in the surrounding environment. The ESRB and the CRSSB localization scheme

is adopted for this purpose, which compares the calculated position to that of the primary

 27

user’s known positions. Users at unknown locations are assumed to be secondary users

[1], [2], [9].

1. Case 1: Extended Semi-Range-Based Localization Scheme

After the sensor nodes conduct spectrum sensing and report their results, the

decision maker develops a global spectrum occupancy map by aggregating the scan

results of the entire wireless sensor network [2]. Then the decision maker identifies

occupied channels over periods of time and attempts to discriminate the users within each

of the occupied channels. That is, the decision maker attempts to determine which of the

users is a primary user or a potential secondary user. After completing user

discrimination, all potential secondary users, which are now users-of-interest, along with

their recorded measurements (i.e., estimated position, estimated signal level, channel

occupancy) are combined into a user-of-interest activity history [1], [2].

When the next spectral scan is received, the decision maker repeats the previous

steps and compares the newly estimated position to the previously stored reference

position. If no match is found, the data is discarded; however, if the new position matches

within acceptable level of tolerance with the reference position, the two results are

merged together to form an updated user-of-interest activity history [1], [2].

This updated history is fed back into a refinement position process where the

estimated positions of all secondary users are calculated. The final step is a cross-

reference of the calculated potential secondary user position with primary user geo-

localization data-base to ensure that the results do not overlap with a primary user. All of

the estimated positions are confirmed if they have been validated for multiple iterations

[2].

2. Case 2: Cooperative-Received-Signal-Strength-Based Scheme

All sensor nodes apply fast spectrum sensing, calculate the energy at the channel,

and report the calculated energy to the decision maker. Based on those energy values, the

decision maker decides which sensor nodes have to apply an additional fine spectrum

sensing (nodes with the highest energy are chosen). The chosen sensor nodes carry out

 28

fine spectrum sensing to determine a more accurate energy estimation of the signal

occupying the channel and report the estimated energy to the decision maker. In this

work, we only adopted the coarse sensing technique using the energy detection based

method because implementation of fine spectrum sensing using cyclostationary or

matched filter methods requires a computationally intensive algorithm [9].

The decision maker uses the received energy values and the positions of the

sensor nodes to estimate the transmitter positions using a received-signal-strength

technique. Finally, the estimated positions are compared to the primary user positions

(from the geo-localization database). If a match is found within an acceptable level-of-

tolerance, the position estimate is discarded. If no matched is found, the position estimate

is considered the position of a potential secondary user [9].

In this chapter, a discussion of the proposed scheme to validate the ESRB and

CRSSB localization algorithms were provided. Each component of the environment was

examined, and a conceptual diagram behind each design was given. In the next chapter,

the performances of the proposed schemes are demonstrated through a real world

implementation. The scenario testbed design and an analysis of the physical

implementation of the preceding components are provided. Intermediate test results that

are used to validate the component’s operating parameters are contained in Chapter IV as

well.

 29

THIS PAGE INTENTIONALLY LEFT BLANK

 30

IV. IMPLEMENTATION MODEL AND RESULTS

An explanation of the conceptual model, designed to demonstrate the

performance of the ESRP localization scheme, was provided in Chapter III. All functions

were explained for each of the elements: 1) sensor node, 2) primary users, 3) secondary

user, and 4) decision maker. The implementation of the proposed testing scenario is

presented in this chapter. An overview of the developed experimental platform is

provided in Section A. The proposed testbed and implementation of each element are

described in detail in Section B. The overall testing scenario, results, and discussion are

presented in Section C.

A. EXPERIMENTAL PLATFORM

The platform used for the physical implementation of each element of the testing

scenario is described in this section. All elements were developed through software

defined radios. Part of the signal processing design was accomplished by the host

machine (laptop) using GNU Radio programming software, while the other part was

undertaken by the Universal Software Radio Peripheral (USRP). In the first subsection, a

description of the hardware used is provided. An overview of the GNU Radio software

and how it was used to design each baseband network element is given in the second

subsection.

1. USRP

The Universal Software Radio Peripheral (USRP) is a hardware device developed

by Ettus Research which gives engineers the capability to develop and implement flexible

software defined radios rapidly and with low cost [19]. In short, a software defined radio

is a radio system which performs the required baseband signal processing tasks (e.g.,

modulation, demodulation, filtering) in a software platform instead of using dedicated

hardware integrated circuits. The remainder of the digital signal processing tasks (e.g.,

up- and down-sampling and digital-to-analog converter (DAC)/analog-to-digital

converter (ADC)) is accomplished via reprogrammable hardware [12]. Since any

software design can easily be replaced in this kind of radio system, the same hardware
 31

can be used to create many communication devices with different transmission standards,

even those requiring high radio frequency performance and large bandwidth as needed in

dynamic spectrum access for cognitive radios [4], [12], [14].

Ettus products are designed with a modular architecture, using a motherboard and

daughterboard cards. The motherboard accomplishes some of the baseband processing on

signals, such as the conversion of the signal from analog to digital [28]; however, the

daughterboard permits performing analog operations on the signal (e.g., analog filtering,

etc.). A large variety of daughterboards can be used with USRPs, depending upon the

frequency range needed by the user. A photograph of the USRP N210 is shown in Figure

11 [28].

Figure 11. USRP N210 with WBX daughterboard.

Ettus Research also developed two open source applications that are useful with

their products. The USRP Hardware Driver provides the USRP with the ability to

communicate with several platforms (Windows, Linux, and Mac OS) [26]. The USRP

Application Programming Interface can be used by multiple software frameworks (GNU

Radio, Simulink). Both applications provide many useful scripts [28]. In particular, the

 32

find_devices script is useful because it enables a host machine to discover any connected

devices and return their type and features [28].

Two devices from Ettus’ list of available products are used in this work: the N210

radio with WBX daughterboard and the B200. The main features of these two devices are

summarized in Table 1, where Msps is used to indicate mega-samples per second [26].

Table 1. USRP N210 and B200 features.

Both devices cover the bandwidth chosen to carry out the experimental testing in

this work, the Industrial, Scientific and Medical (ISM) radio band (902-928 MHz). Each

device is capable of introducing an internal noise source to the received signal. For

example, the N210, which was used as a sensor node in this experiment, adds a noise

figure of 5 dB.

2. GNU Radio

GNU Radio is an open-source software package developed for the

implementation of signal processing and communication applications [19]. The official

 N210+WBX daughterboard B200

Interface Gigabit Ethernet USB 3.0/2.0

ADC sample rate 100 Msps 61.44 Msps

DAC sample rate 400 Msps 61.44 Msps

Host sample rate 25 Msps 61.44 Msps

Power output 15 dBm >10 dBm

Received noise figure 5 dB <8 dB

Frequency range 50 MHz-22 GHz 70 MHz-6 GHz

 33

development project started at the Massachusetts Institute of Technology in 2000 and

continues to be updated with new releases periodically [19], [29].

The software contains a large number of widely used signal processing routines

denoted as blocks (e.g., filter, modulators, and demodulators) which are written in C++

[19], [29]. Additionally, it has many Python scripts that can be used to tie the blocks

together to form the baseband part of any desired radio configuration. Integration

between Python and C++ is controlled by a Simplified Wrapper and Interface Generator

(SWIG) [19].

Given the application, a routine can be developed as a collection of signal

processing blocks tied together in simulation or can be implemented with a hardware

device to form a software-defined radio. In the case of a receiver, as shown in Figure 12

[30], the captured radio frequency signal is converted to an intermediate frequency by the

radio frequency front end and passed through an analog-to-digital converter to be

digitized. Complex samples go through a field-programmable gate array (FPGA) for

digital signal processing tasks (e.g., data rate conversion) and pass to the host machine

through either a Gigabit Ethernet or USB cable, where baseband processing tasks are

executed. For transmission, the entire procedure is reversed. The preprocessed baseband

samples are passed to the USRP from the host machine for further signal processing and

digital-to-analog conversion and then converted to the desired RF frequency and

transmitted [28].

B. TESTBED IMPLEMENTATION

An in-depth explanation of each network element’s design and implementation is

provided in this section.

1. Primary User

As mentioned in Chapter III, the main role of the primary user element is to

transmit a fixed amplitude signal for the duration of one superframe.

 34

Figure 12. USRP and GNU Radio blocks and interconnections for software

defined radio (from [28]).

A more detailed analysis of how the design of the primary user routine

accomplishes this requirement is given in this subsection. The banchmarck_tx.py script

from the GNU Radio example library is modified to obtain the primary.py python routine

and satisfy the design requirements.

The purpose of the overall set up is to be able to locate a secondary user in a

cognitive environment using a wireless sensor network. Given that energy detection is the

only method of spectrum sensing being utilized by the wireless sensor network, the

content of the primary user’s data does not matter because the sensor nodes are only

measuring the signal energy level. For this implementation, the data used for transmission

is randomly generated by applying the python line of code:

data = (pkt_size - 2) * chr(pktno & 0xff)

where chr is a python function which returns a string of one character whose ASCII code

corresponds to an integer which is generated by using a binary AND on the packet

number (pktno) and an 0xff hexadecimal number (matching with the decimal 255) [29].

The character is then multiplied by the packet size minus two bytes to form the packet’s

payload. The minus two is to account for the two-byte header.

In this work, the adopted design for data transmission is shown in Figure 13. First,

data is generated as a random binary sequence and then put into 4000-byte packets using

the GNU Radio function struct.pack (the maximum allowed packet size for this function
 35

is 4096 bytes) which adds a two bytes header. All packets are sent to the modulator block

using the send_pkt function from the packet_transmitter class, which provides a variety

of modulation schemes that can be used for transmission (e.g., Phase-Shift Keying (PSK)

and Quadrature Amplitude Modulation (QAM)). The baseband signal is then sent to the

USRP in the form of in-phase (I) and quadrature (Q) complex samples to be further

processed and transmitted over the air.

Figure 13. Transmitter flow graph

The number of transmitted packets per burst N, the packet size L, and the USRP

sampling rate FS define the superframe length, or burst duration TSF, as

 8 .SF
S

NLT
F

= (5)

What matters most to the ESRP source localization algorithm is the number of

scans that a sensor can achieve during one superframe. In this work, the duration of a

superframe corresponds to the number of scans that a sensor can achieve during the

duration of one superframe. To be efficient, the ESRP source localization algorithm

requires a large number of scans per superframe. An experiment was conducted to test

the relationship between the number of packets used to build one superframe and the

number of scans completed. The results of this experiment are shown in Figure 14. The

chosen superframe duration corresponds to the highlighted point in the curve, which

corresponds to 55 scans (210 transmitted packets).

 36

Figure 14. Relationship between number of generated packet and scan reports

for one superframe duration.

Moreover, as mentioned in Chapter III, the primary user leaves portions of the

frequency spectrum unoccupied (white space) at random intervals, which the secondary

user can opportunistically share. To induce white space in the spectrum, a variable sleep

time was set up between zero and two consecutive burst transmissions. Multiple

measurements were carried out to help choose accurate values corresponding to a short

quiet period between two consecutive superframes and a long quiet period equal to one or

more superframe durations. The result of this is shown in Figure 15.

Experimental testing showed that, for chosen short sleep periods, the signal of two

consecutive bursts appeared to be a continuous wave. This can be explained by the fact

that the USRP introduces a processing delay before transmitting packets. The short quiet

period is added and corresponds to point A in the plot (13 s).

0 50 100 150 200 250
0

10

20

30

40

50

60

70

X: 210
Y: 55

number of packets

nu
m

be
r o

f s
ca

ns

 37

Figure 15. Relationship between time delay and number of scan reports for

quiet period.

To realize variable large quiet periods that are equal to one or more superframe

duration, additional testing was carried out to measure the sleeping time corresponding to

55 scans (one superframe duration), which corresponds to point B in the plot (38 s). The

38-s value is in fact a summation of the previously mentioned short quiet period (13 s)

and the actual superframe duration (25 s). To have the desired random variation of large

quiet periods, the measured duration of the superframe’s actual value is multiplied by a

random integer value between 0 and three. The above process is coded in python using

these two lines of code:

k=random.randint(0,3)

time.sleep(13+k*25).

The random.randint(0,3) is a python function that returns a randomly (uniform

distribution) selected element from the list (0, 1, 2, 3), and the time.sleep suspends the

code execution for the given time delay.

 38

2. Sensor Node

An analysis and a detailed explanation of the routine sensor.py running the

algorithm shown in the flow graph of Figure 16 is presented in this section. The routine

was developed to accomplish the requirements of a sensor node stipulated in Chapter III

and is based on an available python script in the GNU Radio library entitled

usrp_spectrum_sensing.py.

Figure 16. Sensor node flow graph.

a. USRP Initialization

When the script begins, a number of user-selected parameters required by the

device to properly run (e.g., sampling rate and vector size, gain) are immediately passed

to the USRP after running the script by typing the following line of command in the

Ubuntu terminal:

Python sensor.py 917000000 918100000 -g 0 -b 500000 -F 1024 -FS 200000

--tune_delay 0 .1 --dwell_delay 0.05 -thres -58

Each of these parameters are explained in the following paragraphs.

 39

The sampling rate FS is an important parameter that must be chosen carefully.

Care is required because USRPs are programmed to discard any overflowing samples

[28], which usually occurs when using a high sampling rate. This in turn causes a

variable delay in the scan process in the sensor node. In order to avoid this phenomenon,

the sampling rate used was the lowest supported by USRP N210 (200 kHz) [28].

Additionally, in the case of the transmitter, the sampling rate defines the bandwidth of the

transmitted signal, which must be less than the channel separation to give non-

overlapping channels.

The FFT (fast Fourier transform) size parameter F corresponds to the frame size

of the FFT block and is exactly the size of the allocated buffer used to accumulate data

before any FFT processing, which was arbitrarily set to 1024.

The gain g corresponds to the receiver’s tuner card gain. By default, the gain is set

to 15 dB, which is half of the maximum gain supported by USRP N210. [26] In this

experiment, the receiver’s gain is set to 0 dB because experimental testing showed that

using a gain at the receiver introduces a nonlinear increase in the noise level, which in

turn leads to a high probability of false alarm as shown in Table 2 in the next section.

The tune delay tune_delay is the wait time necessary for the USRP to tune to the

next frequency. All the data collected during this time is discarded. For the overall

experiment, the tune delay at sensor nodes is set to 0.1 s [30]. The dwell delay

dwell_delay is the actual time that the USRP listens to a fixed frequency. Samples taken

during this period form the FFT frame, which is set to 0.05 s [30].

The frequency range is the overall spectrum to be scanned. For this experiment,

917 MHz to 918 MHz was chosen because this is a part of the 900 MHz ISM frequency

band. The frequency step b corresponds to the separation between two adjacent channels

in the frequency spectrum and was set to 0.5 MHz, which is greater than the transmitted

signal bandwidth so that no overlap between adjacent channels occurs as dictated by the

scenario design requirements. The total number of channels was three, which is the

number of primary users in this scenario.

 40

The threshold thres is selected in order to differentiate between the energy of a

sensed signal and the noise level. A further explanation on how the threshold is selected

is provided in subsection c.

b. Data Flow

After initialization, the USRP starts sending a stream of complex raw (I and Q)

data to the host machine. All received samples during the tune delay are discarded.

Samples arriving during the dwell delay are buffered to form a frame of the preselected

FFT frame size (F = 1024) using the GNU Radio bit-stream-to-vector (s2v) block. The

frame vector passes through the FFT block, which performs a fast Fourier transformation

on the signal. A Blackman-Harris window is used to overcome the spectrum leakage

effect of the FFT transformation on a non-periodic signal. This functionality is

accomplished using the two GNU Radio blocks window.blackmanharris and fft_vcc as

follows [30]:

mywindow = filter.window.blackmanharris(self.fft_size)

ffter = fft.fft_vcc(self.fft_size, True, mywindow, True).

The output vector passes through the complex_to_mag_squared (c2mag) block,

which calculates the squared-magnitude of each bin of the vector. The output is a float

type data and is placed in an array defined as stats block and labeled m.data, whose

length corresponds to the FFT size [30]. Finally, all the GNU Radio blocks forming the

sensor.py flow graph are connected together using the connect function:

self.connect(self.u, s2v, ffter, c2mag, stats).

The first element of the m.data array corresponds to the center frequency of the

scanned spectrum, while the next 513 elements correspond to the positive side of the

channel (frequency domain representation). Conversely, the 514 to 1024 elements

correspond to the negative side of channel [30]. As depicted in Figure 17, the USRP

introduces a DC offset at the center frequency and slight distortion at both edges due to

filtering irregularity. In order to improve accuracy when estimating the signal’s power,

the first and the last 128 elements are discarded before averaging. The estimated average

energy is determined in accordance with

 41

896
2

129
10

[]
10log

256
i

av

S i
E

F
=

 
 
 =

− 
 
 

∑
 (6)

where, |S[i]| corresponds to the magnitude of the ith element of the FFT output and F is

the frame size of the FFT block.

Next, the result is compared to a preselected threshold (noise level) to decide

whether the channel is free or busy, and the result is recorded into the scan report. After

completing the entire process, the script returns to the beginning, tunes the USRP to the

next channel’s center frequency and repeats the process indefinitely.

Figure 17. USRP output showing DC offset and edges distortion

c. Noise Level Estimation and Threshold Selection

A python routine similar to the sensor.py routine is developed to estimate the

noise level of the surrounding environment. The routine loops 1000 times and calculates

the average energy for each channel. This intermediate test was carried out twice on the

roof of Spanagel Hall at the Naval Postgraduate School, the first time using 0 dB gain at

the receiver and the second time using a 15 dB gain. The results are shown in Table 2.

 42

Table 2. Measured noise level for each channel using two receiver
gains.

 Channel 1:
917 MHz

Channel 2:
917.5 MHz

Channel 3:
918 MHz

Average noise level
(0 dB gain) −59.530 dBm −59.697 dBm −59.331 dBm

Standard deviation
(0 dB gain) 0.060 0.039 0.068

Average noise level
(15 dB) −54.693 dBm −53.231 dBm −51.465 dBm

Standard deviation
(15 dB gain) 44.840 41.456 55.576

The average noise level of the three channels with 0 dB gain is around −59 dBm.

Information can be taken from the standard deviation, which is very small for all

channels. This means that the noise level for 1000 iterations changes very slightly;

however, using a 15 dB gain at the receiver introduces large changes to the noise level.

This can be seen from the large standard deviation. This test supports the 0 dB gain

choice. In order to choose a correct threshold, another test was carried out. This test was

conducted to compute the probability of false alarm Pf corresponding to the number of

times the average energy exceeding the preselected threshold NHE divided by the total

number of iterations NT:

 .HE
f

T

NP
N

= (7)

In the absence of any transmitter, a sensor is set to loop 1,000 times for three

different threshold values (−59, −58.5, and −58 dBm). The results are recorded in Table

3. A reasonable choice for the threshold seems to be −58 dBm, with probability of false

alarm less than 5%, for two reasons: 1) a selection of a low threshold (high Pf) means that

many opportunities may be lost which in turn reduces the efficiency of the system, 2) a

selection of a high threshold (low Pf) leads to a possible misdetection of an eventually

present primary user with a low signal level, which in turn causes interference between

primary and secondary users.

 43

Table 3. Probability of false alarm for each channel with threshold set
to −58, −58.5, −59 dBm and no primary is bursting.

 Probability of false
alarm Pf at channel 1

Probability of false
alarm Pf at channel 2

Probability of false
alarm Pf at channel 3

−58 dBm 0.035 0.041 0.029
−58.5 dBm 0.17 0.21 18.5
−59 dBm 0.332 0.297 0.378

d. Cognitive Environment

The proposed scenario calls for an environment in which sensor nodes are

deployed around the center of the area, and each node is capable of receiving signals

from all of the primary users. To determine where to place each element of the network

and verify that the experiment is carried out in the same condition as those of the

simulations in [2], a preliminary test was carried out in order to measure the signal power

as a function of distance. A primary user was set to send a continuous wave signal with

fixed output energy and frequency (i.e., 0.1 W at 917 MHz), while a sensor node

measures the received power at different distances from the primary user. The sensor

node performs a spectrum sensing scan 1,000 times at each point and averages the

received energy

1000

1
1010 log

1000

av
i

rv

E
E =

 
 
 =
 
 
 

∑
 (8)

where Eav is given by Equation (6).

The results are shown as the received power plotted against distance in Figure 18.

The minimum and maximum measured signal powers at each point are also plotted. The

results indicate that the minimum signal level for distances larger than 10.0 m is under

the preselected threshold (−58 dBm), which causes a possibility of an erroneous

detection. To be on the safe side, the maximum distance between primary users,

secondary user, and sensor nodes was chosen to be less than 10.0 m.

 44

Figure 18. Average signal energy versus distance

3. Secondary User Design

The cognitive radio design was based on the conceptual diagram shown in Figure

10. Essentially, the secondary user should be able to coexist with the primary user in the

same frequency spectrum without interference; therefore, the secondary user must

perform spectrum sensing before accessing the channel.

The cognitive.py routine accomplishes all secondary user functions to meet this

end. As shown in Figure 19, the routine starts by initializing the USRP before carrying

out an energy-detection process to look for unoccupied channels. Whenever there is an

opportunity (i.e., a free channel), the cognitive radio switches into transmission mode.

The energy detection process uses almost the same flow graph as the sensor node’s

routine. That is, after averaging the FFT bins and determining the received signal’s

average energy, the result is compared to a preselected threshold to decide whether the

 45

channel is free or busy. If busy, the algorithm sends a tuning request to the next

frequency, and the process is carried out again by calling the function

self.g.set_center_freq(uhd.tune_request(target_freq,rf_freq=(target_freq+self.lo

_offset), rf_freq_policy=uhd.tune_request.POLICY_MANUAL)).

This function is responsible for tuning the receiver center frequency to the target

frequency, which corresponds to the central frequency of the next channel.

If a free channel is detected, the algorithm switches to transmission mode by

calling the developed function tb.tx_transmitter(center_freq), which sends a burst

following the same process as the one used by a primary user. This happens by

generating packets of pseudo-random data, modulating them, and sending them over the

air using the USRP. After completing one burst, the secondary user switches back to

spectrum sensing mode in the next channel to again look for an unoccupied frequency.

In the first test of the cognitive radio, the same values for tune delay and dwell

delay as those used for the sensor nodes (0.1 s and 0.05 s, respectively) are used. This test

showed that a leakage of power from the transmitter side to the receiver side occurs even

though both sides are physically separated (i.e., using two antennas on two sides, as

shown in Figure 20) and the two processes, sensing and transmission, are carried out at

two different frequencies.

This leakage leads to very high probability of false alarm in the next channel as

shown in Table 4. In order to avoid this phenomenon, an additional separation in the time

domain is added. That is, the secondary user introduces a time delay between the

transmission process and the follow-on sensing process. This solution has a positive

influence on reducing the probability of false alarm, as shown in Table 4. This time

domain separation is created by using a larger tuning delay (i.e., 0.2 s) than the one used

for the sensor nodes.

 46

Figure 19. Cognitive radio flow graph.

Figure 20. Cognitive radio station using two separated transmitter and receiver

antennas.
 47

Table 4. Probability of false alarm versus tune delay for SU.
Tune delay in

seconds Pf at channel 2 Pf at channel 3

0.1 0.447 0.029
0.2 0.049 0.035

C. EXPERIMENTAL RESULTS

1. Testbed

The cognitive environment testbed for the complete scenario was set up on the

roof of Spanagel Hall at the Naval Postgraduate School. All network elements were built

on the software-defined radio design philosophy using GNU Radio and interfaced with

USRPs to take advantage of the software-defined radio’s features, which are mainly

flexibility and adaptability.

The scenario architecture was first introduced in the discussion of simulation in

[2] in which a large number of sensor nodes, primary users and secondary users are

deployed in cognitive environment. In this experiment, only four sensors nodes were used

to form the wireless sensor network. The four sensor nodes, three primary users, and one

secondary user operated in the same proximity to form the overall scenario, as shown in

Figure 21.

Figure 21. Complete testbed with four sensor nodes, three PUs, and one SU.

 48

A sensor node is composed of a laptop in which the routine sensor.py runs

interfaced with the USRP N210 with WBX daughterboard. Each sensor node performs a

spectrum sensing scan in the band of interest [917–918 MHz].

A secondary user deploys the same USRP device (N210 with WBX

daughterboard) as the sensor node and uses a laptop in which a cognitive.py routine is

executed as explained in the previous section.

The primary users are implemented using USRPs B200. Each one is connected to

a laptop via a USB cable. The primary.py routine is run so that each primary user

transmits a constant amplitude burst in a fixed channel following the concept introduced

in the last section. In order to eliminate any possibility of distinguishing between primary

and secondary users using measured power levels, the same output power for both is used

(0.1 W), even though in the real world the primary user power is greater than secondary

user power. A sample of the received energy pattern for a particular channel (channel 3)

at each of the sensor nodes is shown in Figure 22. The primary user’s traffic can be

readily observed in the long continuous bursts dispersed over time. The secondary user

traffic is reflected in the short pulses. The average received signal strength of the

secondary user signal by each sensor node was −36.652 dBm, −42.232 dBm, −32.819

dBm, −28.561, respectively.

Figure 22. Received energy pattern at each of the sensor nodes in channel 3.

 49

All the elements of the network are assigned stationary positions as listed in Table

5. The positions of all elements (i.e., sensor nodes, primary users, and the secondary user)

are scaled by a factor of 100 to better illustrate the results obtained.

Table 5. Primary, sensor nodes and secondary user coordinates used in
the testbed of ESRB localization scheme.

Users X-Coordinates (cm) Y-Coordinates (cm)
Primary User 1 −800 250
Primary User 2 800 250
Primary User 3 800 −250
Sensor Node 1 0 −200
Sensor Node 2 200 0
Sensor Node 3 0 200
Sensor Node 4 −200 0
Secondary User −400 250

2. ESRB Localization Scheme Results

Test execution is run for 20 superframes with the WSN performing 55 scans per

superframe. The position estimates obtained from the ESRB localization algorithm using

the experimental data from the sensor nodes are shown in the Figure 23 by the magenta

crosses. The primary users are the green boxes, while the secondary user is the blue

circle. The sensor nodes are the red Xs in the center of the plot.

The distance error of the estimated position of the secondary user is plotted

against the number of superframes, as shown in Figure 24. The first 18 superframes result

in diverged position estimates from the algorithm. These position estimates are the

magenta crosses inside the circular ring formed by the wireless sensor network at the

center of the environment, as shown in Figure 23. The ESRB algorithm can and will

diverge when the iterative non-linear least-squares method is unable to determine the

direction of descent towards the local minimum. This can be due to several factors but is

primarily due to the algorithm failing to identify the secondary user from among the

primary user traffic. At superframe 18, a coarse position estimate is identified at (−2385

cm, 2385 cm), but this is not close to the secondary user position (an error of 2915 cm).

 50

Additionally, a second potential position was discovered later at (−2380 cm, 1440

cm), which is also incorrect (an error of 1978 cm). These coarse position estimates are

not accurate but are observed to be concentrated in the vicinity of and converging

towards the true position of the secondary user. Those errors are most likely because of

the large amount of spectral scans required in order to obtain an accurate estimate of the

probability of detection at each sensor node and a lack of timing synchronization among

sensors. Also, the simulation results in [2] suggest the number of sensor nodes required to

be on the order of 50 compared to four in this work.

Figure 23. Experimental model and results using wireless sensor network to

locate a stationary cognitive radio.

3. CRSSB Localization Scheme Results

As an alternative, the collected data was processed by the received-signal-

strength-based localization scheme to determine if it was possible to solve for the

position of the secondary user. Several assumptions were introduced to facilitate this
 51

operation. Specifically, all secondary user traffic was segregated from the primary user

traffic on the basis of signal strength and transmission pattern (burst length).

Figure 24. Distance error (cm) versus the number of superframes.

The secondary user’s original transmission power was assumed to be 0.1 W.

Under these conditions, the following distance estimates were obtained for each of the

sensor nodes to form the radii of the circles (sensor 1, 2150.802; sensor 2, 4088.982;

sensor 3, 1383.463; sensor 4, 847.302). The lack of intersection of all four circles makes

it difficult to achieve a secondary user’s position estimate using the received signal

strength localization method alone.

As a second alternative, the cooperative-received-signal-strength-based (CRSSB)

localization scheme along with the previously mentioned assumptions was used to

estimate the secondary user location (under the same conditions as the alternative). The

CRSSB did provide an acceptable position estimation; its output corresponds to the area

of intersection of three circles as shown in Figure 25. The circle centered on sensor node

2 is discarded since it does not intersect with any other circle (the estimated distance

 52

(circle radius) is larger than the other estimations). The resulting estimated position of the

secondary user is (−480 cm, 290 cm) with an error of 89 cm.

In this chapter, an in-depth explanation of the adopted testing scenario used to test

the ESRB and CRSSB localization schemes was provided. Specifically, the testbed and

the network element design were presented in detail. Each of the network elements

worked successfully and provided the desired output. Experimental results were

presented for both ESRB and CRSSB localization schemes; the CRSSB position estimate

was more accurate than the ESRB estimate. The large error in the ESRB estimate is

believed to be due to the lack of time synchronization among sensor nodes, the small

number of sensor nodes, and a small number of spectral scans per superframe as

compared to those used in [2].

Figure 25. Experimental model and results using received signal strength

localization scheme.

 53

THIS PAGE INTENTIONALLY LEFT BLANK

 54

V. CONCLUSION

The focus of this thesis was an implementation of a cognitive environment to

demonstrate the effectiveness of the ESRB and CRSSB localization schemes under real-

world conditions. To accomplish these objectives, a design for the environment was

proposed as shown in Figure 7. The cognitive environment is composed of four elements:

1) primary user, 2) secondary user, 3) sensor node, and 4) decision maker. First, an

explanation of the approach behind each network element’s conceptual diagram was

given. Second, the actual implementation of each element using GNU Radio and USRPs

was presented in detail. The ESRB localization scheme did not provide accurate position

estimates; however, the CRSSB localization scheme yielded an estimate within an

acceptable level of tolerance.

A. SIGNIFICANT CONTRIBUTIONS

Three main contributions were presented in this thesis.

To take advantage of software-defined radio features (flexibility and adaptability),

all network elements were built using GNU Radio interfaced with the USRPs from Ettus

Research. Three GNU Radio routines were developed to meet the design requirements

for sensor nodes, primary users and secondary user. Two Ettus products were used to

achieve this: the USRP N210 with WBX daughterboard for sensor nodes and the

secondary user and the USRP B200 for primary users.

The testbed for the cognitive environment was developed and set up as shown in

Figure 21 on the roof of Spanagel Hall at the Naval Postgraduate School. Each of the

network elements worked successfully and provided the desired output. The primary

users generated a signal with fixed amplitude at the preselected channel. All sensor nodes

were then able to perform energy calculations and detect of the primary user’s signal.

Finally, the secondary user was able to sense the spectrum and transmit a generated burst

in the detected vacant slots.

The scan reports from each sensor node were aggregated at the decision maker in

which the ESRB and the CRSSB localization algorithms were executed in order to
 55

estimate the secondary user location. For the ESRB localization scheme, the results were

not accurate but were observed to be concentrated in the vicinity of and converging

towards the true position of the secondary user as shown in Figure 23. The errors are

believed to be caused by three factors: the limited number of sensor nodes used (four

sensor nodes) compared to the number used on the simulation presented in [2] (50 sensor

nodes), the number of scans per superframe (55 scans) being less than the suggested

number in [2] to obtain accurate estimates (600 scans), and the lack of timing

synchronization among sensor nodes. The CRSSB localization scheme provided position

estimation within an acceptable level of tolerance.

B. FUTURE WORK

An improvement to the implementation reported in this thesis would be to include

a synchronization process among sensor nodes. This is possible via several solutions. For

example, the synchronization may be accomplished using a multiple-input/multiple-

output (MIMO) cable or using an optional global positioning system (GPS) module,

which allows multiple USRPs spread over a large area to synchronize to the GPS

standard [26].

The geographic area of the overall cognitive environment implemented in this

work was restricted to the roof of a building; however, the actual cognitive network may

extend to several kilometers [2]. The main cause of this restriction was the limitation on

the output signal power delivered by the USRPs, which was dictated by the capability of

the USRP B200 (maximum output signal power is ~ 0.1 W [26]) and the regulations of

ISM band, which mandates that the maximum signal power allowed is 0.1 W. Using

another frequency band and adding an external amplifier to the device seems to be a

reasonable solution to allow the device to reach higher power output so that a wider test

area is possible.

In this thesis, the secondary user was assigned a static position; however, a real-

world scenario seldom presents such behavior. A more realistic test scenario can be

accomplished by using a moving secondary user with random movement at various

speeds over time.

 56

The simulation results presented in [1] and [2] showed that using a large number

of sensor nodes gives more accurate position estimates. In the testbed scenario in this

work, the number of sensor nodes was limited to four. The main cause of this restriction

was a limited number of the USRPs available for testing. Using additional sensor nodes

may provide more accurate results than these experimental results.

 57

THIS PAGE INTENTIONALLY LEFT BLANK

 58

APPENDIX

This appendix includes the GNU Radio code for implementing the primary, the

sensor node, and the secondary. The code for Transmit path class is also listed.

A. PRIMARY

The banchmarck_tx.py script from the GNU Radio example library is modified to

obtain the primary.py python routine, and satisfy the design requirements.

#!/usr/bin/env python

from gnuradio import digital

from gnuradio import gr, uhd

from gnuradio import filter

from gnuradio import analog

from gnuradio import blocks

from gnuradio.eng_notation import num_to_str, str_to_num

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import math

import sys

import time, struct

from transmit_path import transmit_path

import random

from datetime import datetime

class tx_transmitter(gr.top_block):

 def __init__(self,modulator, options):

 gr.top_block.__init__(self)

 # --- #

args = modulator.extract_kwargs_from_options(options)

 #symbol_rate = options.bitrate / modulator(**args).bits_per_symbol()

 self.txpath = transmit_path(modulator, options)

 # --

 59

 # Set up USRP to transmit on daughterboard

 d = uhd.find_devices(uhd.device_addr(options.args))

 uhd_type = d[0].get('type')

 # blocks connection

 stream_args = uhd.stream_args('fc32', channels=range(1))

 self.u = uhd.usrp_sink(device_addr=options.args, stream_args=stream_args)

 # Set up USRP system based on type

 if(uhd_type == "usrp"):

 self.u.set_subdev_spec("A:0")

 # Use the tune requests to tune each channel

 #k=random.randint(0,2)

 tr=options.freq

 print "starting frequency %d" % tr

 r = self.u.set_center_freq(tr)

 dev_freq=self.u.get_center_freq()

 print "actual frequency %d " % dev_freq

 self.usrp_rate = options.samp_rate

 print "target sampling rate %d" % options.samp_rate

 self.u.set_samp_rate(self.usrp_rate)

 dev_rate = self.u.get_samp_rate()

 print "actual sampling rate %d" % dev_rate

 # ---

 if options.gain is None:

 # if no gain was specified, use the mid-point in dB

 g = self.u.get_gain_range()

 options.gain = float(g.start()+g.stop())/2.0

 print "no gain mentioned, mid point is used " % options.gain

 else:

 self.u.set_gain(options.gain)

 print "target gain %d" % options.gain

 dev_gain=self.u.get_gain()

 60

 print "actual gain %d" % dev_gain

 # Set the subdevice spec

 if(options.spec):

 self.u.set_subdev_spec(options.spec)

 # Set the antenna

 if(options.antenna):

 self.u.set_antenna(options.antenna)

 self.connect(self.txpath, self.u)

##--

def main():

 mods = digital.modulation_utils.type_1_mods()

 parser=OptionParser(option_class=eng_option,
conflict_handler="resolve")

 expert_grp = parser.add_option_group("Expert")

 transmit_path.add_options(parser, expert_grp)

 parser.add_option("-f", "--freq", type="eng_float", default=913000000,

 help="set frequency to FREQ", metavar="FREQ")

 parser.add_option("-a", "--args", type="string", default="",

 help="UHD device address args [default=%default]")

 parser.add_option("", "--spec", type="string", default=None,

 help="Subdevice of UHD device where appropriate")

 parser.add_option("-A", "--antenna", type="string", default= None,

 help="select Tx Antenna where appropriate")

 parser.add_option("-S", "--samp-rate", type="eng_float", default=200e3,

 help="set sample rate [default=%default]")

 parser.add_option("-g", "--gain", type="eng_float", default=15,

 help="set gain in dB (default is midpoint)")

 parser.add_option("-m", "--modulation", type="choice",
choices=mods.keys(),

 default='psk',

 61

 help="Select modulation from: %s [default=%%default]"

 % (', '.join(mods.keys()),))

 parser.add_option("-s", "--size", type="eng_float", default=4000,

 help="set packet size [default=%default]")

 parser.add_option("-M", "--megabytes", type="eng_float", default=1.0,

 help="set megabytes to transmit [default=%default]")

 parser.add_option("","--discontinuous",action="store_true", default=False,

 help="enable discontinous transmission (bursts of 5
packets)")

 (options, args) = parser.parse_args ()

 #print options

 def send_pkt(payload='', eof=False):

 return tb.txpath.send_pkt(payload, eof)

 #print "mods[options.modulation]", mods[options.modulation]

 # build the graph

 tb = tx_transmitter(mods[options.modulation], options)

 tb.start() # start flow graph

 # Open a file

 fo = open("log.txt", "a")

 fo.write("primary user log file \n");

 # generate and send packets

 nbytes = int(1e6 * options.megabytes)

 n = 0

 pktno = 0

 pkt_size = int(options.size)

 #### delay time to start in order to synchronise all usrp's to the same starting
point

 vdate=time.time()

 print "vdate", vdate

 bdate=datetime(2014, 7, 7, 15, 21, 10)

 t= time.mktime(bdate.timetuple())

 62

 print "bdate", t

 while t>vdate:

 time.sleep(1)

 print "waiting"

 vdate=time.time()

 while 1:

 fo = open("log.txt", "a")

 k=random.randint(0,3)

 data = (pkt_size - 2) * chr(pktno & 0xff)

 payload = struct.pack('!H', pktno & 0xffff) + data

 send_pkt(payload, eof=False)

 n += len(payload)

 fo.write("packet transmition\n");

 sys.stderr.write('.')

 if options.discontinuous and pktno % 10 == 9: # number of packets
in one burst

 k=random.randint(0,3)

 vdate=datetime.now().strftime('%H:%M:%S.%f \n')

 fo.write(vdate);

 time.sleep(1+k*1)

 print "sleep"

 pktno += 1

 fo.close()

 send_pkt(eof=True)

if __name__ == '__main__':

 try:

 main()

 except KeyboardInterrupt:

 pass

 63

A. SENSOR NODE

The sensor.py is based on an available python script in the GNU Radio library

entitled usrp_spectrum_sensing.py.

#!/usr/bin/env python

from gnuradio import gr, eng_notation

from gnuradio import blocks

from gnuradio import audio

from gnuradio import filter

from gnuradio import fft

from gnuradio import uhd

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import sys

import math

import struct

import threading

from datetime import datetime

import datetime as dt

import time

import calendar

class ThreadClass(threading.Thread):

 def run(self):

 return

class tune(gr.feval_dd):

 """

 This class allows C++ code to callback into python.

 """

 def __init__(self, tb):

 gr.feval_dd.__init__(self)

 self.tb = tb
 64

 def eval(self, ignore):

 """

 This method is called from blocks.bin_statistics_f when it wants

 to change the center frequency. This method tunes the front

 end to the new center frequency, and returns the new frequency

 as its result.

 """

 try:

 # We use this try block so that if something goes wrong

 # from here down, at least we'll have a prayer of knowing

 # what went wrong. Without this, you get a very

 # mysterious:

 # terminate called after throwing an instance of

 # 'Swig::DirectorMethodException' Aborted

 # message on stderr. Not exactly helpful ;)

 new_freq = self.tb.set_next_freq()

 # wait until msgq is empty before continuing

 while(self.tb.msgq.full_p()):

 #print "msgq full, holding.."

 time.sleep(0.1)

 return new_freq

 except Exception, e:

 print "tune: Exception: ", e

class parse_msg(object):

 def __init__(self, msg):

 self.center_freq = msg.arg1()

 self.vlen = int(msg.arg2())

 assert(msg.length() == self.vlen * gr.sizeof_float)

 # FIXME consider using NumPy array

 t = msg.to_string()

 self.raw_data = t

 self.data = struct.unpack('%df' % (self.vlen,), t)

 65

class my_top_block(gr.top_block):

 def __init__(self):

 gr.top_block.__init__(self)

 usage = "usage: %prog [options] min_freq max_freq"

 parser = OptionParser(option_class=eng_option, usage=usage)

 parser.add_option("-a", "--args", type="string", default="",

 help="UHD device device address args [default=%default]")

 parser.add_option("", "--spec", type="string", default=None,

 help="Subdevice of UHD device where appropriate")

 parser.add_option("-A", "--antenna", type="string", default=None,

 help="select Rx Antenna where appropriate")

 parser.add_option("-s", "--samp-rate", type="eng_float", default=1e6,

 help="set sample rate [default=%default]")

 parser.add_option("-g", "--gain", type="eng_float", default=None,

 help="set gain in dB (default is midpoint)")

 parser.add_option("", "--tune-delay", type="eng_float",

 default=0.25, metavar="SECS",

 help="time to delay (in seconds) after changing frequency
[default=%default]")

 parser.add_option("", "--dwell-delay", type="eng_float",

 default=0.25, metavar="SECS",

 help="time to dwell (in seconds) at a given frequency
[default=%default]")

 parser.add_option("-b", "--channel-bandwidth", type="eng_float",

 default=6.25e3, metavar="Hz",

 help="channel bandwidth of fft bins in Hz [default=%default]")

 parser.add_option("-l", "--lo-offset", type="eng_float",

 default=0, metavar="Hz",

 help="lo_offset in Hz [default=%default]")

 parser.add_option("-q", "--squelch-threshold", type="eng_float",

 default=None, metavar="dB",

 help="squelch threshold in dB [default=%default]")

 66

 parser.add_option("-F", "--fft-size", type="int", default=None,

 help="specify number of FFT bins
[default=samp_rate/channel_bw]")

 (options, args) = parser.parse_args()

 if len(args) != 2:

 parser.print_help()

 sys.exit(1)

 self.channel_bandwidth = options.channel_bandwidth

 self.min_freq = eng_notation.str_to_num(args[0])

 self.max_freq = eng_notation.str_to_num(args[1])

 if self.min_freq > self.max_freq:

 # swap them

 self.min_freq, self.max_freq = self.max_freq, self.min_freq

 # build graph

 self.u = uhd.usrp_source(device_addr=options.args,

 stream_args=uhd.stream_args('fc32'))

 # Set the subdevice spec

 if(options.spec):

 self.u.set_subdev_spec(options.spec, 0)

 # Set the antenna

 if(options.antenna):

 self.u.set_antenna(options.antenna, 0)

 self.u.set_samp_rate(options.samp_rate)

 self.usrp_rate = usrp_rate = self.u.get_samp_rate()

 self.lo_offset = options.lo_offset

 if options.fft_size is None:

 self.fft_size = int(self.usrp_rate/self.channel_bandwidth)

 print self.fft_size

 else:

 self.fft_size = options.fft_size # very slow for 128 fft_size

 self.squelch_threshold = options.squelch_threshold

 s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)

 67

 mywindow = filter.window.blackmanharris(self.fft_size)

 ffter = fft.fft_vcc(self.fft_size, True, mywindow, True)

 power = 0

 for tap in mywindow:

 power += tap*tap

 c2mag = blocks.complex_to_mag_squared(self.fft_size)

 # Set the freq_step to 75% of the actual data throughput.

 # This allows us to discard the bins on both ends of the spectrum.

 self.freq_step = self.channel_bandwidth

 self.min_center_freq = self.min_freq

 nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step)

 self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step)

 self.next_freq = self.min_center_freq

 tune_delay = max(0, int(round(options.tune_delay * usrp_rate /
self.fft_size))) # in fft_frames

 print "tune delay", tune_delay

 dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate /
self.fft_size))) # in fft_frames

 print " dwell delay", dwell_delay

 self.msgq = gr.msg_queue(1)

 self._tune_callback = tune(self) # hang on to this to keep it from being
GC'd

 stats = blocks.bin_statistics_f(self.fft_size, self.msgq,

 self._tune_callback, tune_delay,

 dwell_delay)

 # FIXME leave out the log10 until we speed it up

 #self.connect(self.u, s2v, ffter, c2mag, log, stats)

 self.connect(self.u, s2v, ffter, c2mag, stats)

 if options.gain is None:

 # if no gain was specified, use the mid-point in dB

 g = self.u.get_gain_range()

 options.gain = float(g.start()+g.stop())/2.0
 68

 self.set_gain(options.gain)

 print "gain =", options.gain

 def set_next_freq(self):

 target_freq = self.next_freq

 self.next_freq = self.next_freq + self.freq_step

 if self.next_freq >= self.max_center_freq:

 self.next_freq = self.min_center_freq

 if not self.set_freq(target_freq):

 print "Failed to set frequency to", target_freq

 sys.exit(1)

 return target_freq

 def set_freq(self, target_freq):

 """

 Set the center frequency we're interested in.

 Args:

 target_freq: frequency in Hz

 @rypte: bool

 """

 r = self.u.set_center_freq(uhd.tune_request(target_freq, rf_freq=(target_freq
+ self.lo_offset),rf_freq_policy=uhd.tune_request.POLICY_MANUAL))

 if r:

 return True

 return False

 def set_gain(self, gain):

 self.u.set_gain(gain)

 def nearest_freq(self, freq, channel_bandwidth):

 freq = round(freq / channel_bandwidth, 0) * channel_bandwidth

 return freq

def main_loop(tb):

 fo = open("sensor1", "w+")

 vdate=datetime.now().strftime('%D')

 #fo.write(vdate);

 69

 fo.write("sensor 1 log file for: %s \n\n\n" % vdate)

 fo.write("0=busy \n");

 fo.write("1=free \n");

 bin_start =int(tb.fft_size * ((1 - 0.75) / 2)) # remove the edges of the signal

 print "bin_start", bin_start

 bin_stop = int(tb.fft_size - bin_start)

 print "bin_stop", bin_stop

 iteration=0

 #### delay time to start in order to synchronise all usrp's to the same starting
point

 vdate=time.time()

 print "vdate", vdate

 bdate=datetime(2014, 7, 7, 14, 44, 10)

 t= time.mktime(bdate.timetuple())

 print "bdate", t

 while t>vdate:

 time.sleep(1)

 print "waiting"

 vdate=time.time()

 ##

 while 1:

 #for j in range (1, 11):

 iteration +=1

 fo = open("sensor1", "a+")

 vdate=datetime.now().strftime('%H:%M:%S.%f \n')

 fo.write(vdate);

 #fo.close()

 print "iteration", iteration, datetime.now()

 for i in range (1,4):

 fo = open("sensor1", "a+")

 # Get the next message sent from the C++ code (blocking call).

 # It contains the center frequency and the mag squared of the fft

 70

 m = parse_msg(tb.msgq.delete_head())

 # m.center_freq is the center frequency at the time of capture

 # m.data are the mag_squared of the fft output

 # m.raw_data is a string that contains the binary floats.

 # You could write this as binary to a file.

 center_freq = m.center_freq

 power_db=0

 power=0

 for i_bin in range(bin_start, bin_stop):

 power +=m.data[i_bin]

 #print power

 power_db += 10*math.log10(1e-6+power/tb.usrp_rate)

 if (power_db > tb.squelch_threshold):

 print "center_freq", center_freq, "power_db", power_db, "channel %d"
%i, "is busy"

 a=str(power_db)

 fo.write("chan %d 0 " % int(i));

 fo.write(a);

 fo.write("\n");

 fo.close()

 else:

 print "center_freq", center_freq, "power_db", power_db, "channel
%d" %i, "is free"

 a=str(power_db)

 fo.write("chan %d 1 " % int(i));

 fo.write(a);

 fo.write("\n");

 fo.close()

if __name__ == '__main__':

 t = ThreadClass()

 t.start()

 tb = my_top_block()

 71

 try:

 tb.start()

 main_loop(tb)

 except KeyboardInterrupt:

 pass

B. SECONDARY USER

#!/usr/bin/env python

from gnuradio import digital

from gnuradio import gr

from gnuradio import uhd

from gnuradio import filter

from gnuradio import analog

from gnuradio import blocks

from gnuradio import eng_notation

from gnuradio.eng_notation import num_to_str

from gnuradio.eng_notation import str_to_num

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import math

import sys

import time

import struct

from transmit_path import transmit_path

from gnuradio import audio

from gnuradio import fft

import threading

from datetime import datetime

options={}

frequency=0

 72

mods = digital.modulation_utils.type_1_mods()

class ThreadClass(threading.Thread):

 def run(self):

 return

class tune(gr.feval_dd):

 """

 This class allows C++ code to callback into python.

 """

 def __init__(self, tb):

 gr.feval_dd.__init__(self)

 self.tb = tb

 def eval(self, ignore):

 """

 This method is called from blocks.bin_statistics_f when it wants

 to change the center frequency. This method tunes the front

 end to the new center frequency, and returns the new frequency

 as its result.

 """

 try:

 # We use this try block so that if something goes wrong

 # from here down, at least we'll have a prayer of knowing

 # what went wrong. Without this, you get a very

 # mysterious:

 # terminate called after throwing an instance of

 # 'Swig::DirectorMethodException' Aborted

 # message on stderr. Not exactly helpful ;)

 new_freq = self.tb.set_next_freq()

 # wait until msgq is empty before continuing

 while(self.tb.msgq.full_p()):

 #print "msgq full, holding.."

 time.sleep(0.1)

 return new_freq

 73

 except Exception, e:

 print "tune: Exception: ", e

class parse_msg(object):

 def __init__(self, msg):

 self.center_freq = msg.arg1()

 self.vlen = int(msg.arg2())

 assert(msg.length() == self.vlen * gr.sizeof_float)

 # FIXME consider using NumPy array

 t = msg.to_string()

 self.raw_data = t

 self.data = struct.unpack('%df' % (self.vlen,), t)

sensing and main class

class my_top_block(gr.top_block):

 def __init__(self):

 global options, frequency, mods #modulator

 gr.top_block.__init__(self)

 parser = OptionParser(option_class=eng_option,
conflict_handler="resolve")

 expert_grp = parser.add_option_group("Expert")

 transmit_path.add_options(parser, expert_grp)

 usage = "usage: %prog [options] min_freq max_freq"

 parser = OptionParser(option_class=eng_option, usage=usage)

 parser.add_option("-a", "--args", type="string", default="",

 help="UHD device device address args [default=%default]")

 parser.add_option("", "--spec", type="string", default=None,

 help="Subdevice of UHD device where appropriate")

 parser.add_option("-A", "--antenna", type="string", default=None,

 help="select Tx/Rx Antenna where appropriate")

 parser.add_option("-S", "--samp-rate", type="eng_float", default=200e3,

 help="set sample rate [default=%default]")

 parser.add_option("", "--tune-delay", type="eng_float",

 default=0.25, metavar="SECS",

 74

 help="time to delay (in seconds) after changing frequency
[default=%default]")

 parser.add_option("", "--dwell-delay", type="eng_float",

 default=0.25, metavar="SECS",

 help="time to dwell (in seconds) at a given frequency
[default=%default]")

 parser.add_option("-b", "--channel-bandwidth", type="eng_float",

 default=500e3, metavar="Hz",

 help="channel bandwidth of fft bins in Hz [default=%default]")

 parser.add_option("-l", "--lo-offset", type="eng_float",

 default=0, metavar="Hz",

 help="lo_offset in Hz [default=%default]")

 parser.add_option("-q", "--squelch-threshold", type="eng_float",

 default=None, metavar="dB",

 help="squelch threshold in dB [default=%default]")

 parser.add_option("-F", "--fft-size", type="int", default=None,

 help="specify number of FFT bins
[default=samp_rate/channel_bw]")

 parser.add_option("-g", "--txgain", type="eng_float", default=15,

 help="set gain in dB (default is midpoint)")

 parser.add_option("-G", "--rxgain", type="eng_float", default=15,

 help="set gain in dB (default is midpoint)")

 parser.add_option("-m","--modulation", type="choice",
choices=mods.keys(),

 default='psk',

 help="Select modulation from: %s [default=%%default]"

 % (', '.join(mods.keys()),))

 parser.add_option("-s", "--size", type="eng_float", default=4000,

 help="set packet size [default=%default]")

 parser.add_option("-M", "--megabytes", type="eng_float", default=1.0,

 help="set megabytes to transmit [default=%default]")

 (options, args) = parser.parse_args ()

 if len(args) != 2:

 75

 parser.print_help()

 sys.exit(1)

Set up USRP to transmit on daughterboard

 d = uhd.find_devices(uhd.device_addr(options.args))

 uhd_type = d[0].get('type')

 # build graph

 modulator=mods[options.modulation]

 stream_args = uhd.stream_args('fc32', channels=range(1))

 self.u = uhd.usrp_sink(device_addr=options.args, stream_args=stream_args)

 self.g =
uhd.usrp_source(device_addr=options.args,stream_args=stream_args)

 self.txpath = transmit_path(mods[options.modulation], options)

 ########### transmitter features ########

 # Set the antenna

 if(options.antenna):

 self.u.set_antenna(options.antenna, 0)

 # Set the subdevice spec

 # Set up USRP system based on type

 if(uhd_type == "usrp"):

 self.u.set_subdev_spec("A:0")

 #if(options.spec):

 #self.u.set_subdev_spec("A:0")

 # Set the antenna

 if(options.antenna):

 self.u.set_antenna(options.antenna, 0)

 ###### sampling rate

 self.u.set_samp_rate(options.samp_rate)

 # set gain:

 self.u.set_gain(options.txgain)

 print "target gain %d" % options.txgain

 #dev_gain=self.u.get_gain()

 76

 #print "actual gain %d" % dev_gain

 # Set up USRP system based on type

 self.channel_bandwidth = options.channel_bandwidth

 self.min_freq = eng_notation.str_to_num(args[0])

 self.max_freq = eng_notation.str_to_num(args[1])

 if self.min_freq > self.max_freq:

 # swap them

 self.min_freq, self.max_freq = self.max_freq, self.min_freq

 # Set the subdevice spec

 #if(options.spec):

 #self.g.set_subdev_spec("A:0")

 #self.g.subdev.set_auto_tr(True)

Set the antenna

 if(options.antenna):

 self.g.set_antenna(options.antenna, 0)

 self.g.set_samp_rate(options.samp_rate)

 self.usrp_rate = usrp_rate = self.g.get_samp_rate()

 self.lo_offset = options.lo_offset

 if options.fft_size is None:

 self.fft_size = int(self.usrp_rate/self.channel_bandwidth)

 print self.fft_size

 else:

 self.fft_size = options.fft_size # very slow for 128 fft_size

 self.squelch_threshold = options.squelch_threshold

 s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)

 mywindow = filter.window.blackmanharris(self.fft_size)

 ffter = fft.fft_vcc(self.fft_size, True, mywindow, True)

 power = 0

 for tap in mywindow:

 power += tap*tap

 c2mag = blocks.complex_to_mag_squared(self.fft_size)

 # Set the freq_step to 75% of the actual data throughput.

 77

 # This allows us to discard the bins on both ends of the spectrum.

 self.freq_step = self.channel_bandwidth

 self.min_center_freq = self.min_freq

 nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step)

 self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step)

 self.next_freq = self.min_center_freq

 tune_delay = max(0, int(round(options.tune_delay * usrp_rate /
self.fft_size))) # in fft_frames

 print "tune delay", tune_delay

 dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate /
self.fft_size))) # in fft_frames

 print " dwell delay", dwell_delay

 self.msgq = gr.msg_queue(1)

 self._tune_callback = tune(self) # hang on to this to keep it from being
GC'd

 stats = blocks.bin_statistics_f(self.fft_size, self.msgq,

 self._tune_callback, tune_delay,

 dwell_delay)

 #self.connect(self.u, s2v, ffter, c2mag, log, stats)

 #### Rx gain

 self.g.set_gain(options.rxgain)

 print "target gain %d" % options.rxgain

 ### connection

 #self.txpath = transmit_path(mods[options.modulation], options)

 self.connect(self.g, s2v, ffter, c2mag, stats)

 self.connect(self.txpath, self.u)

 ##### transmitter

 def tx_transmitter(self, frequency):

 def send_pkt(payload='', eof=False):

 return self.txpath.send_pkt(payload, eof)
 78

 def tx_set_freq(frequency):

 stream_args = uhd.stream_args('fc32', channels=range(1))

 l= uhd.usrp_sink("", stream_args=stream_args)

 r = l.set_center_freq(uhd.tune_request(frequency,
rf_freq=(frequency),rf_freq_policy=uhd.tune_request.POLICY_MANUAL))

 #l.set_center_freq(frequency)

 print "transmiting on %d frequency " %frequency

 nbytes = int(1e6) #* options.megabytes)

 n = 0

 pktno = 0

 pkt_size = int(options.size)

 tx_set_freq(frequency)

 while 1:

 data = (pkt_size - 2) * chr(pktno & 0xff)

 payload = struct.pack('!H', pktno & 0xffff) + data

 send_pkt(payload, eof=False)

 #tr.send_pkt(payload, eof=False)

 n += len(payload)

 if pktno % 5 == 4:

 break

 pktno += 1

 #tr.txpath.send_pkt(eof=True)

 #send_pkt(eof=True

 def set_next_freq(self):

 target_freq = self.next_freq

 self.next_freq = self.next_freq + self.freq_step

 if self.next_freq >= self.max_center_freq:

 self.next_freq = self.min_center_freq

 if not self.set_freq(target_freq):

 print "Failed to set frequency to", target_freq

 sys.exit(1)

 return target_freq

 79

 def set_freq(self, target_freq):

 """

 Set the center frequency we're interested in.

 Args:

 target_freq: frequency in Hz

 @rypte: bool

 """

 r = self.g.set_center_freq(uhd.tune_request(target_freq, rf_freq=(target_freq
+ self.lo_offset),rf_freq_policy=uhd.tune_request.POLICY_MANUAL))

 if r:

 return True

 return False

 def main_loop(tb):

 global options

 bin_start =250 #int(tb.fft_size * ((1 - 0.75) / 2)) in order to elliminate DC
component

 bin_stop = int(tb.fft_size - bin_start)

 iteration=0

 #### delay time to start in order to synchronise all usrp's to the same starting
point

 vdate=time.time()

 print "vdate", vdate

 bdate=datetime(2014, 7, 7, 15, 25, 10)

 t= time.mktime(bdate.timetuple())

 print "bdate", t

 while t>vdate:

 time.sleep(5)

 print "waiting"

 vdate=time.time()

 while 1:

 iteration +=1

 print "iteration", iteration, datetime.now(),"\n"

 for i in range (1,4):
 80

 # Get the next message sent from the C++ code (blocking call).

 # It contains the center frequency and the mag squared of the fft

 m = parse_msg(tb.msgq.delete_head())

 # m.center_freq is the center frequency at the time of capture

 # m.data are the mag_squared of the fft output

 # m.raw_data is a string that contains the binary floats.

 # You could write this as binary to a file.

 center_freq = m.center_freq

 power_db=0

 power=0

 for i_bin in range(bin_start, bin_stop):

 power +=m.data[i_bin]

 power_db += 10*math.log10(1e-6+power/tb.usrp_rate)

 if (power_db > tb.squelch_threshold):

 print "center_freq", center_freq, "power_db", power_db, "channel %d"
%i, "is busy"

 else:

 print "center_freq", center_freq, "power_db", power_db, "channel
%d" %i, "is free"

 tb.tx_transmitter(center_freq)

 time.sleep(1)

if __name__ == '__main__':

 t = ThreadClass()

 t.start()

 tb = my_top_block()

 try:

 tb.start()

 main_loop(tb)

 except KeyboardInterrupt:

 pass

 81

C. TRANSMIT PATH

from gnuradio import gr

from gnuradio import eng_notation

from gnuradio import blocks

from gnuradio import digital

import copy

import sys

class transmit_path(gr.hier_block2):

 #print "transmit_path class"

 def __init__(self, modulator_class, options):

 '''

 See below for what options should hold

 '''

 gr.hier_block2.__init__(self, "transmit_path",

 gr.io_signature(0,0,0),

gr.io_signature(1,1,gr.sizeof_gr_complex))

self._tx_amplitude = .25 #options.tx_amplitude # digital amplitude
sent to USRP

 self._modulator_class = modulator_class # the modulator_class
we are using

 # Get mod_kwargs

mod_kwargs=self._modulator_class.extract_kwargs_from_options(options)

 # transmitter

 self.modulator = self._modulator_class(**mod_kwargs)

 self.packet_transmitter = \

 digital.mod_pkts(self.modulator,

 access_code=None,

 msgq_limit=100,

 pad_for_usrp=True)

 self.amp = blocks.multiply_const_cc(1)

 self.set_tx_amplitude(self._tx_amplitude)

 82

 # Display some information about the setup

 #if self._verbose:

 #self._print_verbage()

 # Connect components in the flowgraph

 self.connect(self.packet_transmitter, self.amp, self)

 def set_tx_amplitude(self, ampl):

 #print "transmit path set tx amplitude"

 """

 Sets the transmit amplitude sent to the USRP in volts

 Args:

 : ampl 0 <= ampl < 1.

 """

 self._tx_amplitude = max(0.0, min(ampl, 1))

 print self._tx_amplitude

 self.amp.set_k(self._tx_amplitude)

 def send_pkt(self, payload='', eof=False):

 #print "transmit_path send_pkt"

 """

 Calls the transmitter method to send a packet

 """

 return self.packet_transmitter.send_pkt(payload, eof)

 def samples_per_symbol(self):

 return self.modulator._samples_per_symbol

 def differential(self):

 return self.modulator._differential

 def add_options(normal, expert):

 """

 Adds transmitter-specific options to the Options Parser

 """

 if not normal.has_option('--bitrate'):

 normal.add_option("-r", "--bitrate", type="eng_float",

 83

 default=100e3,

 help="specify bitrate [default=%default].")

 expert.add_option("-S", "--samples-per-symbol", type="float",

 default=2,

 help="set samples/symbol [default=%default]")

 expert.add_option("", "--log", action="store_true",

 default=False,

 help="Log all parts of flow graph to file (CAUTION:
lots of data)")

 # Make a static method to call before instantiation

 add_options = staticmethod(add_options)

 84

LIST OF REFERENCES

[1] A. Adams, M. Tummala, J. McEachen and J. Scrofani, “Source localization and
tracking in a cognitive radio environment consisting of frequency and spatial
mobility,” in Proc. 7th Int. Conf. on Signal Process. Commun. Syst., Carrara,
VIC, pp. 1–6, 2013.

[2] A. Adams, “Source localization in a cognitive radio environment consisting of
frequency and spatial mobility,” Master’s thesis, Naval Postgraduate School,
Monterey, CA, 2012.

[3] T. Yucek and H. Arsan. “A survey of spectrum sensing algorithms for cognitive
radio applications,” IEEE Communications Survey & Tutorials, vol. 11, no. 1,
pp. 116–130, 2009.

[4] R.A. Rashid, M.A. Sarijari, N. Fisal, S.K.S. Yusof and N.H. Mahalin,
“Spectrum sensing measurement using GNU Radio and USRP software radio
platform,” in Proc. 7th Int. Conf. Wireless and Mobile Commun., Luxembourg,
2011.

[5] R.A. Rashid, M.A. Sarijari, N. Fisal, S.K.S. Yusof and S.H.S. Ariffin, “Enabling
dynamic spectrum access for cognitve radio using software defined radio
platform,” in Proc.of Wireless Technol. Applicat., Langkawi, pp.180–185, 2011.

[6] C. Carlos, K. Challapali, D. Birru and S. Shankar,. “IEEE 802.22: An
introduction to the first wireless standard based on cognitive radio,” J.
Commun., vol. 1, no. 1, pp. 39‒47, 2006.

[7] A. He, K.K. Bae, T.R. Newman and J. Gaeddert, “A survey of artificial
intelligence for cognitive radios,” IEEE Trans. on Veh. Technol., vol. 59, no. 4,
pp. 1578–1592, 2010.

[8] H. Simon, “Cognitive radio: Brain-empowered wireless communications,” IEEE
J. Selected Areas in Commun., vol. 23, no. 2, pp. 201‒220, 2005.

[9] H. Celebi and H. Arslan, “Cognitive positioning systems,” IEEE Trans. on
Wireless Commun., vol. 6, no. 12, pp. 4475–4483, 2007.

[10] V. Sönmezer, “Cooperative wideband spectrum sensing and localization using
radio frequency sensor networks,” Master’s thesis, Naval Postgraduate School,
Monterey, CA, 2009.

 85

[11] “Draft standard for wireless regional area network part 22: Cognitive wireless
RAN medium access control (MAC) and physical layer (PHY) specification:
Policies and procedures for operation in the TV bands,” IEEE, 2008.

[12] K.G. Shin, K. Hyooil, A.W. Min and A. Kumar, “Cognitive radio for dynamic
spectrum access: From concept to reality,” IEEE Wireless Commun., vol. 17, no.
6, pp. 64–74, 2010.

[13] J. H. Reed. Software Radio: A Modern Approach to Radio Engineering. Upper
Saddle River, NJ: Prentice Hall Professional, 2002.

[14] A. Jain, V. Sharma and B. Amrutur, “Soft real time implementation of a
cognitve radio testbed for frequency hopping primary satisfying QoS
Requirements,” in Proc. 20th Nat. Conf. Commun., Kanpur, 2014.

[15] E.R. Lavudiya, K.D. Kulat and J.D. Kene, “Implementation and analysis of
cognitive radio system using Matlab,” Int. J. Comput. Sci. Telecommun., vol. 4,
no. 7, pp. 23‒28, 2013.

[16] D. Cabric, S.M. Mishra and R.W. Brodersen, “Implementation issues in
spectrum sensing for cognitive radios,” in Conf. Record 38th Asilomar Conf.
Signals, Syst. Comput., vol. 1, pp. 772‒776, 2004.

[17] “Notice of proposed rule making and order: Facilitating opportunities for
flexible, efficient, and reliable spectrum use employing cognitive radio
technologies,” FCC, 2005.

[18] G. Nautiyal and R. Kumar, “Spectrum sensing in cognitve radio using
MATLAB,” Int. J. Eng. Adv. Technol., vol. 2, no. 5, 2013.

[19] P.S. Aparna and M. Jayasheela, “Cyclostationary feature detection in cognitive
radio using different modulation schemes,” Int. J. Comput. Applicat., vol. 47,
no. 21, 2012.

[20] M.A. Sarijari, A. Marwanto, N. Fisal, S.K.S. Yusof and R.A Rashid, “Energy
detection sensing based on GNU Radio and USRP: An analysis study,” in Proc.
Malaysia Int. Conf. Commun. (MICC), Kuala Lumpur, 2009.

[21] K. Letaief and W. Zhang, “Cooperative communications for cognitive radio
networks,” in Proc. of IEEE, vol. 97, no. 5, pp. 878‒893, 2009.

[22] G. Gnesan and Y. Li, “Cooperative spectrum sensing cognitive radio networks,”
in Proc. IEEE Int. Conf. .Commun., Beijing, 2008.

 86

[23] Z. Wang, Z. Feng, J. Song, Y. Hu and P. Zhang, “A practical semi range-based
localizationa for cognitive radio,” in Proc. IEEE 71st Veh.Technol. Conf.,
Taipei, 2010.

[24] M. Zhioyao, W. Chen, K.B. Letaief and Z. Cao., “A semi range-based iterative
localization algorithm for cognitive radio networks,” in Proc. IEEE Trans. Veh.
Technol., vol. 59, no. 2, pp. 704‒717, 2010.

[25] I. Guvenc and C. C. Chong, “A survey on TOA based wireless localization and
NLOS mitigation techniques,” in IEEE Communication Survey & Tutorials, vol.
11, no. 3, pp. 107–124, 2009.

[26] Y. Wang, X. Wang, D. Wang and D.P. Agrawal, “Range-free localization using
expected hop progress in wireless sensor networks,” in IEEE Trans. Parallel
and Dist. Syst., vol. 20, no. 10, pp. 1540–1552, 2009.

[27] H. Celebi and H. Arslan, “Cognitive positioning systems,” in IEEE Trans.
Wireless Commun., vol. 6, no. 12, pp. 4475–4483, 2007.

[28] Ettus Research, Product description: USRP N200/N210 Networked series and
USRP B200/B210 Bus series. [Online]. Accessed July 2014.
Available:https://www.ettus.com/product/details

[29] GNU Radio, “GNU Radio: The free and open radio system” (definition and
installation). [Online]. Accessed July 2014.
Available:http://gnuradio.org/redmine/projects/gnuradio/wiki

[30] A. Aftab and M. N. Mufti, “Spectrum sensing through implementation of
USRP2,” Master’s thesis, Blekinge Institute of Technology, Sweden, 2010.

[31] Python Software Foundation, VA. “Python 3.4.1 documentation.” [Online]. Last
updated Sep. 11, 2014. Accessed July 2014. Available:
https://docs.python.org/3/

[32] A. Crohas, “Practical implementation of a cognitive radio system for dynamic
spectrum access,” Master’s thesis, University of Notre Dame, Indiana, 2008.

[33] A.A. Tabassam, M.U. Suleman, S. Kalsait and S. Khan, “Building cognitve
radio in MATLAB Simulink-A Step towards future wireless technologgy,”
Wireless Advanced (WiAd), pp. 15–20, London, 2011.

 87

 THIS PAGE INTENTIONALLY LEFT BLANK

 88

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

 89

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. Thesis objective
	B. Related work
	C. Thesis outline

	II. Background
	A. Cognitive Radio
	1. Cognitive Cycle
	2. Spectrum Sensing
	a. Energy Detection-Based Method
	b. Cyclostationary-Based Method
	c. Matched Filter-Based Method

	3. Cooperative Spectrum Sensing
	4. Application of Cognitive Radio: IEEE 802.22 Standard
	a. Wireless Regional Area Network Deployment Scenario and Cognitive Radio Architecture
	b. Spectrum Sensing in the IEEE 802.22 Standard

	B. Software defined radio
	1. Software Defined Radio (SDR)
	2. Software Defined Radio Model
	3. Benefits

	C. Localization using wireless radio frequency sensors network
	1. Semi-Range-Based Localization Scheme
	2. Extended Semi-Range-Based Localization Scheme
	a. Spectrum Sensing
	b. Spectral Environment Mapping
	c. Localization
	d. Position Refinement

	3. Cooperative-Received-Signal-Strength-Based Localization Schemes

	III. Cognitive radio environment conceptual design
	A. Proposed scheme
	B. Scenario design
	1. Wireless Sensor Network
	2. Primary User Network
	3. Secondary User
	a. Spectrum Sensing
	b. Decision Making
	c. Data Transmission

	C. Decision maker
	1. Case 1: Extended Semi-Range-Based Localization Scheme
	2. Case 2: Cooperative-Received-Signal-Strength-Based Scheme

	IV. Implementation model and results
	A. Experimental Platform
	1. USRP
	2. GNU Radio

	B. Testbed implementation
	1. Primary User
	2. Sensor Node
	a. USRP Initialization
	b. Data Flow
	c. Noise Level Estimation and Threshold Selection
	d. Cognitive Environment

	3. Secondary User Design

	C. experimental results
	1. Testbed
	2. ESRB Localization Scheme Results
	3. CRSSB Localization Scheme Results

	V. Conclusion
	A. Significant contributionS
	B. Future work

	appendix
	A. Primary
	a. Sensor node
	b. Secondary user
	c. Transmit path

	List of References
	initial distribution list

